TSpé DEVOIR SURVEILLE N°6

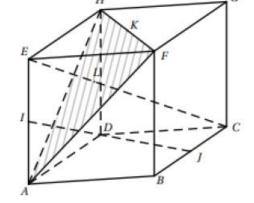
/ 40

Exercice 1:

Ceci est un questionnaire à choix multiples (QCM). Entourer **la** bonne réponse. Aucune justification n'est demandée. Une réponse exacte rapporte un point, une réponse fausse ou une absence de réponse ne rapporte aucun point.

Les questions 1 à 3 se rapportent à la figure ci-contre où :

ABCDEFGH désigne un cube de côté 1.


On appelle \mathcal{P} le plan (AFH).

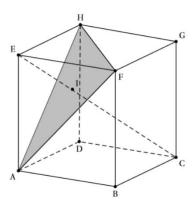
Le point *I* est le milieu du segment [*AE*],

Le point *J* est le milieu du segment [*BC*],

Le point *K* est le milieu du segment [*HF*],

Le point L est le point d'intersection de la droite (EC) et du plan P.

Question 1:


- 1) Les droites (*IJ*) et (*EC*) sont strictement parallèles.
- 2) Les droites (IJ) et (EC) sont non coplanaires.
- 3) Les droites (*IJ*) et (*EC*) sont sécantes.
- 4) Les droites (*IJ*) et (*EC*) sont confondues.

Exercice 2:

On considère un cube ABCDEFGH, d'arête de longueur 1.

On se place dans le repère $(D; \overrightarrow{DA}; \overrightarrow{DC}; \overrightarrow{DH})$

- 1. Dans ce repère, donner les coordonnées des sommets du cube.
- 2. Déterminer les coordonnées du vecteur \overrightarrow{EC}
- 3.a. Déterminer les coordonnées des vecteurs \overrightarrow{AF} et \overrightarrow{FH}
- 5. Soit J le milieu du segment [GB]. Déterminer ces coordonnées.

Correction Exercice 1:

Question 1: Réponse 2

M1 : Par l'absurde, si (IJ) et (EC) étaient coplanaires, alors le point J appartiendrait au plan (ECI), c'est-à-dire au plan (ECA), ce qui est faux.

Correction Exercice 2

1. On a
$$A(1;0;0)$$
 $B(1;1;0)$ $C(0;1;0)$ $D(0;0;0)$

$$E(1;0;1)$$
 $F(1;1;1)$ $G(0;1;1)$ $H(0;0;1)$

2. On a
$$\overrightarrow{EC} \begin{pmatrix} 0-1\\1-0\\0-1 \end{pmatrix}$$
 donc $\overrightarrow{EC} \begin{pmatrix} -1\\1\\-1 \end{pmatrix}$

3.a. On a
$$\overrightarrow{AF}\begin{pmatrix} 1-1\\1-0\\1-0 \end{pmatrix}$$
 donc $\overrightarrow{AF}\begin{pmatrix} 0\\1\\1 \end{pmatrix}$ et $\overrightarrow{FH}\begin{pmatrix} 0-1\\0-1\\1-1 \end{pmatrix}$ donc $\overrightarrow{FH}\begin{pmatrix} -1\\-1\\0 \end{pmatrix}$

$$5.J\left(\frac{1}{2};1;\frac{1}{2}\right)$$