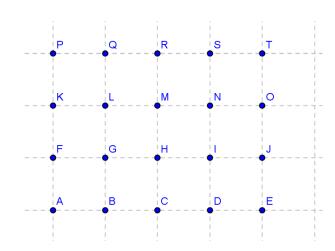
FICHE D'EXERCICES DE REVISIONS POUR LE DS SUR LES VECTEURS

Exercice 1: Le cours

4. Compléter: " Soient A, B et M trois points distincts.

M est le milieu de [AB] si et seulement si"

Exercice 2:



Compléter les pointillés:

Le point F a pour image le point par la translation de vecteur $\overrightarrow{AG} + \overrightarrow{SN}$.

Le point a pour image le point R par la translation de vecteur JM.

Le point A a pour image le point N par la translation de vecteur \overrightarrow{FH} +

Le point H est l'image du point par la translation de vecteur \overrightarrow{SI} .

Le point est l'image du point N par la translation de vecteur $\overrightarrow{FG} - \overrightarrow{OJ}$.

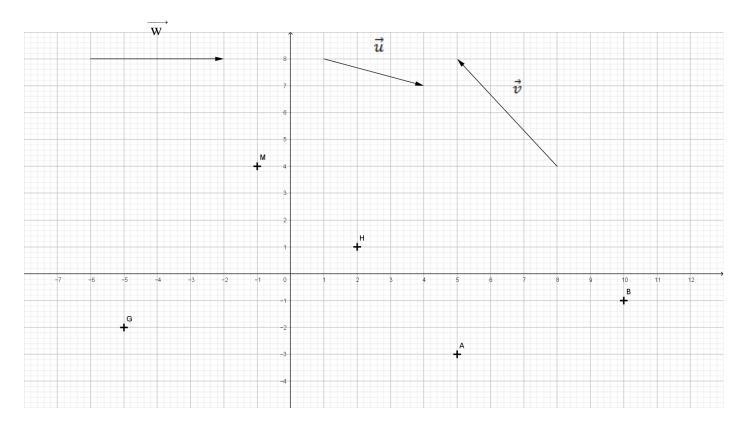
Le point T est l'image du point par la translation de vecteur $\overrightarrow{SI} + 2\overrightarrow{JM}$.

Le point est l'image du point J par la translation de vecteur $\overrightarrow{DC} - \overrightarrow{OJ} + \overrightarrow{JM}$.

$$\overrightarrow{AM} + \overrightarrow{NR} - \overrightarrow{JI} = \overrightarrow{B....}$$
; $\overrightarrow{AG} + 2\overrightarrow{NR} - \overrightarrow{JI} = \overrightarrow{C....}$; $2\overrightarrow{HO} + \overrightarrow{NR} - 2\overrightarrow{ST} = \overrightarrow{A....}$

Exercice 3:

On laissera les traits de construction sur le dessin.

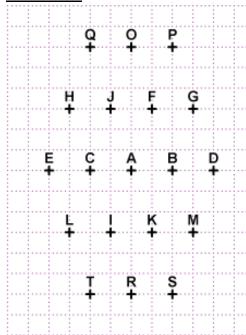


- 1. Tracer le point C, image de A par la translation de vecteur \overrightarrow{u} .
- 2. Tracer le point D, image de G par la translation de vecteur $\overrightarrow{u} + \overrightarrow{v}$.
- 3. Tracer le point E, image de H par la translation de vecteur $\frac{3}{2} \overrightarrow{w} \overrightarrow{v}$
- 4. Tracer le point F, image de B par la translation de vecteur $-3 \stackrel{\frown}{u} \frac{7}{4} \stackrel{\frown}{w}$.
- 5. Sachant que M est l'image de P par une translation du vecteur $\overrightarrow{2u} + \overrightarrow{2v} \frac{3}{4} \overrightarrow{w}$, tracer P.
- 6. Tracer le point K qui vérifie $\overrightarrow{GK} = \overrightarrow{AB} + \frac{1}{2} \overrightarrow{HB} \overrightarrow{MG}$.
- 7. Tracer le point L qui vérifie $\overrightarrow{LH} = \overrightarrow{AH} + \frac{1}{2} \overrightarrow{AG} \frac{1}{3} \overrightarrow{MH}$.

Exercice 4:

- 1. Placer 4 points distincts A, B, C et D.
- 2. Construire le point M tel que $\overrightarrow{AM} = \overrightarrow{CB} \overrightarrow{AB} + \overrightarrow{AD}$
- 3. Que constate t-on? Le démontrer.

Exercice 5:



1. Dans le parallélogramme QPFH, compléter :

$$\cdots$$
 + \cdots = \cdots

2. Citer deux vecteurs non colinéaires à EF mais de même norme:

3. Citer deux vecteurs colinéaires de sens contraire à \overrightarrow{PG} :

4. Citer deux vecteurs opposés à \overrightarrow{MO} :

5.Compléter:

$$\overrightarrow{AC} + \overrightarrow{CI} = \dots$$

$$\overrightarrow{LI} - \overrightarrow{GI} = \dots$$

$$\overrightarrow{LI} - \overrightarrow{GI} = \dots$$
 $\overrightarrow{CA} + \overrightarrow{CJ} = \dots$

$$\overrightarrow{AC} + 2 \overrightarrow{FB} = \overrightarrow{P...}$$

$$-\overrightarrow{AQ} + \overrightarrow{GJ} + \overrightarrow{BM} = \overrightarrow{O...}$$

$$\frac{1}{3} PI' + 2 BA - SK = P...$$

$$\frac{1}{4}$$
 PT - 2 JF + $\frac{1}{2}$ QS = O...

$$\frac{3}{4}$$
ED + $\frac{1}{2}$ TP - QF = L...

$$\frac{3}{4} ED + \frac{1}{2} TP - QF = L...$$

$$\frac{2}{3} ML + 2 IA + \frac{1}{2} GL = D....$$

CORRECTION

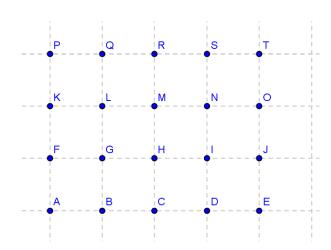
Exercice 1: Le cours

- 1. Compléter : " un vecteur est caractérisé par une direction, un sens et une longueur "
- 2. Compléter : "Les points A, B, C sont alignés si AB et AC sont colinéaires "
- 3. Compléter: "Soient A, B E et F quatre points distincts.

 ABFE est un parallélogramme si et seulement si $\overrightarrow{AB} = \overrightarrow{EF}$ "
- 4. Compléter: "Soient A, B et M trois points distincts.

M est le milieu de [AB] si et seulement si $\overrightarrow{AB} = 2 \overrightarrow{AM}$ ou $\overrightarrow{AM} = \frac{1}{2} \overrightarrow{AB}$ "

Exercice 2:



Compléter les pointillés:

Le point F a pour image le point G par la translation de vecteur $\overrightarrow{AG} + \overrightarrow{SN}$.

Le point O a pour image le point R par la translation de vecteur JM'.

Le point A a pour image le point N par la translation de vecteur FH + CN

Le point H est l'image du point R par la translation de vecteur \overline{SI} .

Le point T est l'image du point N par la translation de vecteur $\overline{FG} - \overline{OJ}$.

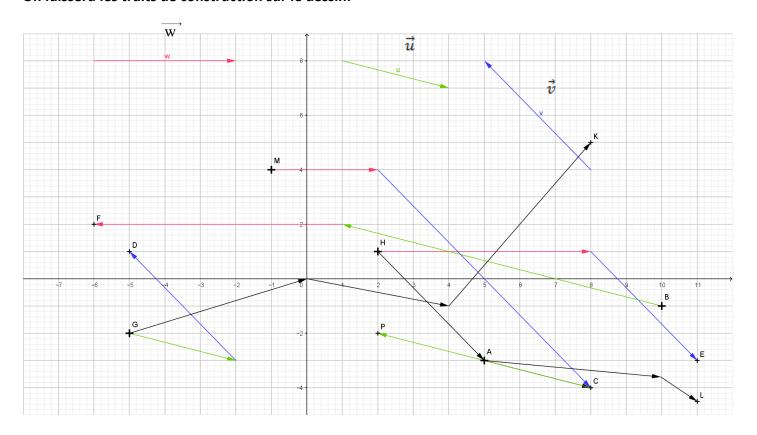
Le point T est l'image du point P par la translation de vecteur $\overrightarrow{SI} + 2\overrightarrow{JM}$.

Le point Q est l'image du point J par la translation de vecteur $\overrightarrow{DC} - \overrightarrow{OJ} + \overrightarrow{JM}$.

$$\overrightarrow{AM} + \overrightarrow{NR} - \overrightarrow{JI} = \overrightarrow{BS}$$
 ; $\overrightarrow{AG} + 2\overrightarrow{NR} - \overrightarrow{JI} = \overrightarrow{CR}$; $2\overrightarrow{HO} + \overrightarrow{NR} - 2\overrightarrow{ST} = \overrightarrow{AQ}$

Exercice 3:

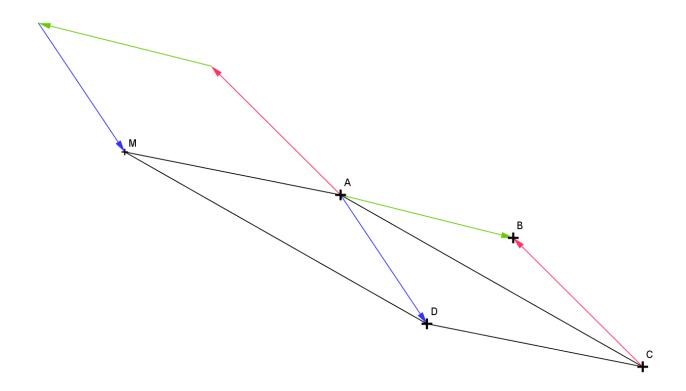
On laissera les traits de construction sur le dessin.



- 1. Tracer le point C, image de A par la translation de vecteur \overrightarrow{u} .
- 2. Tracer le point D, image de G par la translation de vecteur $\overrightarrow{u} + \overrightarrow{v}$.
- 3. Tracer le point E, image de H par la translation de vecteur $\frac{3}{2} \overrightarrow{w} \overrightarrow{v}$
- 4. Tracer le point F, image de B par la translation de vecteur -3 \overrightarrow{u} $-\frac{7}{4}$ \overrightarrow{w} .
- 5. Sachant que M est l'image de P par une translation du vecteur $\overrightarrow{2u} + \overrightarrow{2v} \frac{3}{4} \overrightarrow{w}$, tracer P.
- 6. Tracer le point K qui vérifie $\overrightarrow{GK} = \overrightarrow{AB} + \frac{1}{2} \overrightarrow{HB} \overrightarrow{MG}$.
- 7. Tracer le point L qui vérifie $\overrightarrow{LH} = \overrightarrow{AH} + \frac{1}{2} \overrightarrow{AG} \frac{1}{3} \overrightarrow{MH}$.

Exercice 4:

- 1. Placer 4 points distincts A, B, C et D.
- 2. Construire le point M tel que $\overrightarrow{AM} = \overrightarrow{CB} \overrightarrow{AB} + \overrightarrow{AD}$
- 3. Que constate t-on? Le démontrer.

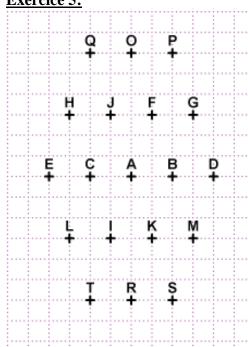


On constate que AMDC est un parallélogramme.

$$\overrightarrow{AM} = \overrightarrow{CB} - \overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{CB} + \overrightarrow{BA} + \overrightarrow{AD} = \overrightarrow{CA} + \overrightarrow{AD} = \overrightarrow{CD}$$

 $\overrightarrow{AM} = \overrightarrow{CD} \Leftrightarrow AMDC$ est un parallélogramme.

Exercice 5:



1. Dans le parallélogramme QPFH, compléter :

$$\overrightarrow{QP} + \overrightarrow{QH} = \overrightarrow{QF}$$

- 2. Citer deux vecteurs non colinéaires à \overrightarrow{EF} mais de même norme: \overrightarrow{DJ} ou \overrightarrow{BH} ou \overrightarrow{MC} ou \overrightarrow{KE} ou \overrightarrow{SL}
- 3. Citer deux vecteurs colinéaires de sens contraire à \overrightarrow{PG} : ... \overrightarrow{BO} ou \overrightarrow{MO} ou \overrightarrow{SA} ou \overrightarrow{TE} ...
- 4. Citer deux vecteurs opposés à \overrightarrow{MO} : \overrightarrow{QK} ou \overrightarrow{HR}

5.Compléter:

$$\overrightarrow{AC} + \overrightarrow{CI} = \overrightarrow{AI}$$
 (relation de Chasles)

$$\overrightarrow{LI} - \overrightarrow{GI} = \overrightarrow{LI} + \overrightarrow{IG} = \overrightarrow{LG}$$

 $\overrightarrow{CA} + \overrightarrow{CJ} = \overrightarrow{CF}$ (identité du parallélogramme)

$$\overrightarrow{AC} + 2 \overrightarrow{FB} = \overrightarrow{AR} = \overrightarrow{PB}$$

$$-\overrightarrow{AQ} + \overrightarrow{GJ} + \overrightarrow{BM} = \overrightarrow{QL} = \overrightarrow{OI}$$

$$\frac{1}{3}$$
 PI + 2 BA – SK = \overrightarrow{PC}

$$\frac{1}{4}$$
 PT -2 JF $+\frac{1}{2}$ QS $= \overrightarrow{PI} = \overrightarrow{OL}$

$$\frac{3}{4}$$
ED + $\frac{1}{2}$ TP - QF = \overrightarrow{LP}

$$\frac{2}{3}$$
 ML + 2 IA + $\frac{1}{2}$ GL = \overrightarrow{DJ}