Nom, Prénom:....

Mardi 6 Octobre 2025

TSpé INTERROGATION /10

/10

On donne la suite (u_n) définie pour tout entier naturel n par : $u_0 = 2$ et $u_{n+1} = 0.7$ $u_n + 1.8$.

- 1) Montrer par récurrence que, pour tout entier naturel n, on a : $u_n \le u_{n+1} < 6$.
- 2) On considère la suite (v_n) définie pour tout entier naturel n, par $v_n = 6 u_n$.
 - a) Montrer que la suite (v_n) est géométrique. Préciser sa raison et son premier terme.
 - b) Déterminer l'expression de v_n en fonction de n puis celle de u_n en fonction de n.

Nom, Prénom:....

Mardi 6 Octobre 2025

TSpé INTERROGATION /10

/10

On donne la suite (u_n) définie pour tout entier naturel n par : $u_0=2$ et $u_{n+1}=0,7$ $u_n+1,8$.

- 1) Montrer par récurrence que, pour tout entier naturel n, on a : $u_n \le u_{n+1} \le 6$.
- 2) On considère la suite (v_n) définie pour tout entier naturel n, par $v_n = 6 u_n$.
 - a) Montrer que la suite (v_n) est géométrique. Préciser sa raison et son premier terme.
 - b) Déterminer l'expression de v_n en fonction de n puis celle de u_n en fonction de n.

Nom, Prénom:....

Mardi 6 Octobre 2025

TSpé INTERROGATION /10

/10

On donne la suite (u_n) définie pour tout entier naturel n par : $u_0 = 2$ et $u_{n+1} = 0.3$ $u_n + 3.5$.

- 1) Montrer par récurrence que, pour tout entier naturel n, on a : $u_n \le u_{n+1} < 5$.
- 2) On considère la suite (v_n) définie pour tout entier naturel n, par $v_n = 5 u_n$.
 - a) Montrer que la suite (v_n) est géométrique. Préciser sa raison et son premier terme.
 - b) Déterminer l'expression de v_n en fonction de n puis celle de u_n en fonction de n.

Nom, Prénom:.....

Mardi 6 Octobre 2025

TSpé INTERROGATION /10

/10

On donne la suite (u_n) définie pour tout entier naturel n par : $u_0 = 2$ et $u_{n+1} = 0.3$ $u_n + 3.5$.

- 1) Montrer par récurrence que, pour tout entier naturel n, on a : $u_n \le u_{n+1} < 5$.
- 2) On considère la suite (v_n) définie pour tout entier naturel n, par $v_n = 5 u_n$.
 - a) Montrer que la suite (v_n) est géométrique. Préciser sa raison et son premier terme.
 - b) Déterminer l'expression de v_n en fonction de n puis celle de u_n en fonction de n.

TSpé Correction INTERROGATION/10

On donne la suite (u_n) définie pour tout entier naturel n par : $u_0 = 2$ et $u_{n+1} = 0.7$ $u_n + 1.8$.

1) Montrer par récurrence que, pour tout entier naturel n, on a :

$$u_n \le u_{n+1} < 6.$$

Posons P_n : " $u_n \le u_{n+1} \le 6$ " pour tout entier naturel n.

Initialisation:
$$n = 0$$
 $u_0 = 2$ et $u_1 = 0.7 \times 2 + 1.8 = 3.2$

donc $u_0 \le u_1 \le 6$ P₀ est vraie.

Hérédité : Soit un entier naturel k tel que Pk est vrai

c'est-à-dire que $u_k \le u_{k+1} < 6$.

Démontrons qu'alors P_{k+1} est vraie

c'est-à-dire que $u_{k+1} \le u_{k+2} < 6$.

$$u_k \le u_{k+1} < 6 \Leftrightarrow 0.7u_k \le 0.7u_{k+1} < 4.2$$

$$\Leftrightarrow 0.7u_k + 1.8 \le 0.7u_{k+1} + 1.8 \le 6$$

Donc P_{k+1} est vraie.

Conclusion : P₀ est vraie et P_n est héréditaire

donc P_n est vraie pour tout entier naturel n.

- 2) On considère la suite (v_n) définie pour tout entier naturel n, par $v_n = 6 u_n$.
 - a) Montrer que la suite (v_n) est géométrique.

Préciser sa raison et son premier terme.

$$v_{n+1} = 6 - u_{n+1}$$

= 6 - 0,7 u_n - 1,8
= -0,7 u_n + 4,2
= -0.7 (u_n - 6)

= 0,7 v_n donc la suite (v_n) est une suite géométrique de raison q = 0,7 et de premier terme v_0 = 6 - u_0 = 6 - 2 = 4

b) Déterminer l'expression de v_n en fonction de n puis celle de u_n en fonction de n.

$$v_n = v_0 \times q^n = 4 \times 0.7^n$$
 et $u_n = 6 - v_n = 6 - 4 \times 0.7^n$

TSpé Correction INTERROGATION /10

On donne la suite (u_n) définie pour tout entier naturel n par : $u_0 = 2$ et $u_{n+1} = 0.3$ $u_n + 3.5$.

1) Montrer par récurrence que, pour tout entier naturel n, on a :

$$u_n \leq u_{n+1} < 5.$$

Posons P_n : " $u_n \le u_{n+1} \le 5$ " pour tout entier naturel n.

Initialisation:
$$n = 0$$
 $u_0 = 2$ et $u_1 = 0.3 \times 2 + 3.5 = 4.1$

donc $u_0 \le u_1 \le 5$ P₀ est vraie.

Hérédité : Soit un entier naturel k tel que P_k est vrai

c'est-à-dire que $u_k \le u_{k+1} < 5$.

Démontrons qu'alors P_{k+1} est vraie

c'est-à-dire que $u_{k+1} \le u_{k+2} < 5$.

$$u_k \le u_{k+1} < 5 \Leftrightarrow 0.3u_k \le 0.3u_{k+1} < 1.5$$

 $\Leftrightarrow 0.3u_k + 3.5 \le 0.3u_{k+1} + 3.5 < 5$

Donc P_{k+1} est vraie.

Conclusion : P₀ est vraie et P_n est héréditaire

donc P_n est vraie pour tout entier naturel n.

- 2) On considère la suite (v_n) définie pour tout entier naturel n, par $v_n = 5 u_n$.
 - a) Montrer que la suite (v_n) est géométrique.

Préciser sa raison et son premier terme.

$$\begin{aligned} v_{n+1} &= 5 - u_{n+1} \\ &= 5 - 0.3 \ u_n - 3.5 \\ &= -0.3 \ u_n + 1.5 \\ &= -0.3 \ (\ u_n - 5 \) \end{aligned}$$

- = 0,3 v_n donc la suite (v_n) est une suite géométrique de raison q = 0,3 et de premier terme v_0 = 5 u_0 = 5 2 = 3
- b) Déterminer l'expression de v_n en fonction de n puis celle de u_n en fonction de n.

$$v_n = v_0 \times q^n = 3 \times 0.3^n$$
 et $u_n = 5 - v_n = 5 - 3 \times 0.3^n$