Révisions DS2

Exercice 1: (3 points)

Une entreprise qui fabrique des cerfs-volants modélisé son coût total de production, en milliers d'euros, par la fonction :

$$C_T(x) = \frac{1}{3}x^3 - \frac{1}{4}x^2 - \frac{1}{2}x + 2$$

où x est la quantité produite, en milliers de cerfs-volants, avec $0 \le x \le 6$.

2) Etudier les variations de la fonction C_T sur [0; 6].

Exercice 2: (11 points)

Soit la suite (u_n) définie pour $n \ge 1$ par : $u_n = \frac{3n+1}{n+1}$

- 1) Calculer u₅ et le onzième terme.
- 2) Montrer que pour tout entier naturel $n \ge 1$, on a : $u_{n+1} u_n = \frac{2}{(n+1)(n+2)}$
- 3) En déduire la monotonie de la suite (un)
- 4) Montrer que la suite est majorée par 3.

Exercice 3: (6 points)

Soit (U_n) la suite définie par $U_0 = 8$ et pour tout entier naturel n, $U_{n+1} = 0.85$ $U_n + 1.8$

- 1) Calculer U_1 , U_2 et U_3 .
- 2) Soit (V_n) la suite définie pour tout entier naturel par : $V_n = U_n 12$
 - a) Démontrer que (V_n) est une suite géométrique de raison 0,85. Préciser son premier terme V_0 .
 - b) Exprimer (V_n) en fonction de n.
 - c) En déduire que $U_n = 12 4 \times 0.85^n$.
 - d) Donner le sens de variation de (V_n), en déduire celui de (U_n). Justifier.

Exercice 4: (5 points)

On considère la suite (u_n) définie pour tout entier naturel n , $\left\{ \begin{array}{l} u_0=7 \\ u_{n+1}=2u_n-4 \end{array} \right.$

Démontrer par récurrence que, pour tout entier naturel n , $u_n=3\times 2^n+4.$

CORRECTION

Exercice 1:

2) Dérivée:
$$\forall x \in \mathbb{R}$$
, $C'_T(x) = x^2 - \frac{1}{2}x - \frac{1}{2}$

Signe de C'_T(x): On calcule le discriminant : $\Delta = \frac{9}{4}$ $x_1 = -\frac{1}{2}$ $x_2 = 1$

x	0		1		6
signe de $C'_T(x)$		_	0	+	

Variations de C_T :

x	0	1	6
Variations	2		√ 62
de C _T		19	
		$\frac{15}{12}$	

Soit la suite (u_n) définie pour $n \ge 1$ par : $u_n = \frac{3n+1}{n+1}$

1)
$$u_5 = \frac{16}{6} = \frac{8}{3}$$
 Le onzième terme est u_{11} : $u_{11} = \frac{34}{12} = \frac{17}{6}$

2) Pour tout entier naturel $n \ge 1$, on a :

$$\begin{split} u_{n+1} - u_n &= \frac{3(n+1)+1}{n+1+1} - \frac{3n+1}{n+1} \\ &= \frac{3n+4}{n+2} - \frac{3n+1}{n+1} \\ &= \frac{(3n+4)(n+1) - (3n+1)(n+2)}{(n+1)(n+2)} \\ &= \frac{3n^2 + 7n + 4 - 3n^2 - 7n - 2}{(n+1)(n+2)} \\ &= \frac{2}{(n+1)(n+2)} \end{split}$$

3) Monotonie de la suite (u_n) : Etude du signe de $u_{n+1} - u_n$.

Pour tout entier naturel $n \ge 1$, on a $\begin{cases} 2 > 0 \\ n+1 > 0 \\ n+2 > 0 \end{cases} \text{ donc } u_{n+1} - u_n > 0 \text{ donc } (u_n) \text{ est une suite croissante.}$

4) u_n est majorée par 3 si , pour tout entier naturel $n \ge 1$ on a $3 > u_n \iff 3 - u_n > 0$ $3 - u_n = 3 - \frac{3n+1}{n+1} = \frac{3(n+1) - (3n+1)}{n+1} = \frac{2}{n+1}$

$$3 - u_n = 3 - \frac{3n+1}{n+1} = \frac{3(n+1) - (3n+1)}{n+1} = \frac{2}{n+1}$$

 $\text{Pour tout entier naturel } n \geq 1, \text{ on a } \left\{ \begin{array}{l} 2 \geq 0 \\ n+1 \geq 0 \end{array} \right. \quad \text{donc } 3-u_n \geq 0 \text{ donc } (u_n) \text{ est majorée par } 3.$

Exercice 3:

Soit (U_n) la suite définie par $U_0=8$ et pour tout entier naturel n, $U_{n+1}=0.85$ $U_n+1.8$

1)
$$u_1 = 0.85 \times 8 + 1.8 = 8.6$$
; $u_2 = 9.11$; $u_3 = 9.5435$

- 2) Soit (V_n) la suite définie pour tout entier naturel par : $V_n = U_n 12$
 - a) $v_{n+1} = u_{n+1} 12 = 0.85 u_n + 1.8 12 = 0.85 u_n 10.2 = 0.85 (u_n 12) = 0.85 v_n$

Donc (V_n) est une suite géométrique de raison 0,85et de premier terme $v_0 = -4$

b)
$$v_n = v_0 \times q^n = -4 \times 0.85^n$$

$$c) \left\{ \begin{array}{l} v_n = -4\times 0,85^n \\ v_n = u_n - 12 \end{array} \right. \ donc \ u_n = v_n + 12 = \ 12 - 4\times 0,85^n \label{eq:constraint}$$

d) Sens de variation de (V_n) :

Suite géométrique de raison 0 < q < 1 et de 1er terme négatif donc (V_n) est croissante.

Sens de variation de (U_n) : (U_n) a même sens de variation que (V_n) car $u_n = v_n + 12$.

Exercice 4:

On considère la suite (u_n) définie pour tout entier naturel n , $\left\{ \begin{array}{l} u_0 = 7 \\ u_{n+1} = 2u_n - 4 \end{array} \right.$

Démontrer par récurrence que, pour tout entier naturel n , $u_n = 3 \times 2^n + 4$.

Soit P_n la propriété définie pour tout entier naturel n par " $u_n = 3 \times 2^n + 4$ "

Initialisation:
$$n = 0$$

 $3 \times 2^0 + 4 = 7 = u_0$ donc P_0 est vraie

Hérédité:

 $\begin{array}{c} \text{Soit} \quad \text{un entier } k \text{ tel que } P_k \text{ est vraie c'est-} \\ \text{Montrons alors que } P_{k+1} \text{ est vraie c'est } \\ \text{dire que } u_{k+1} = 3 \times 2^{k+1} + 4. \end{array}$

u
$$_{k+1}=2$$
 u $_k-4=2$ $(3\times 2^k+4)-4=3\times 2^{k+1}+8-4=3\times 2^{k+1}+4$ Donc P_{k+1} est vraie.

Conclusion:

 P_0 est vraie et P_n est héréditaire donc pour tout entier naturel n, P_n est vraie c'est à dire que $u_n=3\times 2^n+4$.