2^{nde} Fiche d'exercices Généralités sur les fonctions

Voici la courbe représentative d'une fonction *f* définie sur **R**.

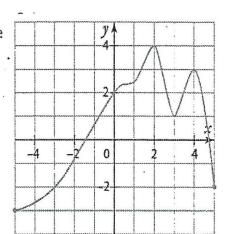
Par lecture graphique, déterminer:

- a) l'image de -1 par f.
- b) l'image de 0 par f.
- c) le (ou les) antécédent(s) de 1 par f.
- d) le (ou les) antécédent(s) de 3 par f.
- On considère la fonction g définie sur \mathbb{R} par g(x) = 5x + 2 et \mathscr{C}_q sa courbe représentative dans un repère.

1. Le point $M\left(\frac{2}{3}; 5\right)$ appartient-il à \mathcal{C}_{g} ?

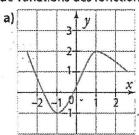
2. Calculer l'abscisse du point T appartenant à \mathcal{C}_g tel que l'ordonnée de T soit nulle.

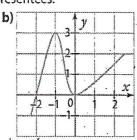
Voici la courbe représentative d'une fonction h définie sur [-5;5]. Estimer les solutions des inéquations suivantes.

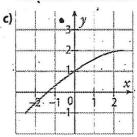


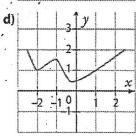
- tions suivant **a)** $h(x) \ge 0$ **b)** h(x) < -4
- c) h(x) < -2
- **d)** h(x) > 2
- 4) ((W) > 2

Pour chacune des courbes suivantes, établir le tableau de variations des fonctions représentées.

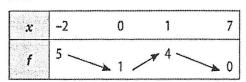






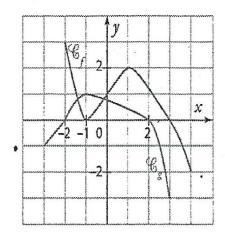


S Voici le tableau de variations d'une fonction f.



- 1. Comparer si possible les nombres suivants en justifiant.
- a) f(2) et f(4)
- **b)** f(-2) et f(-1)
- 2. Résoudre $f(x) \ge 0$.
- 3. On sait de plus que f(-1,5) = 4. Résoudre $f(x) \le 4$ et f(x) > 4.

Dans chaque cas, déterminer le signe de la fonction dont on donne la courbe représentative dans un repère.



À partir du tableau de signes suivant :

*	× ×		-3	*	+'00
f(xt)		+ .	Ó	, 100	

- 1. donner les signes des nombres suivants.
- a) f(5)
- b) f(-2)
- c) f(-7)
- 2. Résoudre les inéquations suivantes.
- a) f(x) > 0
- b) $f(x) \ge 0$
- c) f(x) < 0
- 3. Dans un repère, tracer une courbe pouvant représenter la fonction f.

CORRECTION

Exercice 1:

- a) L'image de -1 par f est environ 1,5.
- b) L'image de 0 par f est 3.
- c) Les antécédents de 1 par f sont environ 1,2 et environ 1,2.
- d) L'antécédent de 3 par f est 0.

Exercice 2:

1)
$$g(\frac{2}{3}) = 5 \times \frac{2}{3} + 2 = \frac{10}{3} + \frac{6}{3} = \frac{16}{3}$$
 et $\frac{16}{3} \neq 5$ donc $M \notin C_g$

2) Il faut résoudre g(x) = 0.

$$g(x) = 0 \Leftrightarrow 5x + 2 = 0 \Leftrightarrow 5x = -2 \Leftrightarrow x = -\frac{2}{5}$$
 donc le point T a pour abscisse $-\frac{2}{5}$.

Exercice 3:

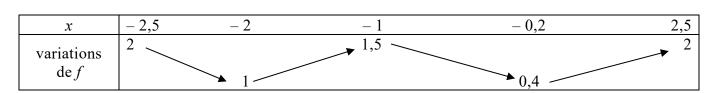
- a) $h(x) \ge 0$ Les solutions sont les abscisses des points de la courbe ayant une ordonnée supérieure ou égale à 0. S = [-1.5; 4.8]
- b) h(x) < -4 Les solutions sont les abscisses des points de la courbe ayant une ordonnée strictement inférieure à -4. $S = \emptyset$
- c) h(x) < -2 Les solutions sont les abscisses des points de la courbe ayant une ordonnée strictement inférieure à -2. S = [-5; -3[
- d) h(x) > 2 Les solutions sont les abscisses des points de la courbe ayant une ordonnée strictement supérieure à 2. S =] 0; 2,8 [\cup] 3,5 ; 4,3 [

Exercice 4:

х	-2,5	- 1	1	2,5
variations de <i>f</i>	2	-1	2	1

х	-2,2	- 1	0		2,5
variation de f	-1	3	0 -	\	2

х	-2,5	2,5
variations $\operatorname{de} f$	-1 —	2



Exercice 5:

- 1) a) $2 \in [1;7]$ et $4 \in [1;7]$. Sur l'intervalle [1;7] la fonction f est décroissante donc elle perturbe l'ordre donc 2 < 4 et f(2) > f(4)
 - b) $-2 \in [-2; 0]$ et $-1 \in [-2; 0]$. Sur l'intervalle [-2; 0] la fonction f est décroissante donc elle perturbe l'ordre donc -2 < -1 et f(-2) > f(-1)
- 2) Le minimum de f sur [-2;7] est 0 donc l'ensemble des solutions de $f(x) \ge 0$ est S = [-2;7].
- 3) Sur [-1,5;7] $f(x) \le 4$ donc l'ensemble des solutions de $f(x) \le 4$ est S = [-1,5;7]. Sur [-2;-1,5[f(x) > 4] donc l'ensemble des solutions de f(x) > 4 est S = [-2;-1,5[.

Exercice 6:

X	- 2	- 1		3	4
signes de $f(x)$	+	0	+	0	_

X	-3		- 2		2		3
signes de $g(x)$		_	0	+	0	-	

Exercice 7:

- 1) a) 5 > -3 donc f(5) < 0
- b) -2 > -3 donc f(-2) < 0
- c) -7 < -3 donc f(-7) > 0

- 2) a) $f(x) > 0 \text{ sur }] \infty; -3[$
- b) $f(x) \ge 0 \text{ sur }] -\infty; -3]$
- c) $f(x) < 0 \text{ sur }] 3; + \infty[$

3)

