I.Cardinal d'un ensemble:

1) Définition du cardinal d'un ensemble fini :

Soit A un ensemble fini.

Le cardinal de A, noté Card (A) est le nombre d'éléments de l'ensemble A.

Exemple : $A = \{ 1; 2; 6; 9; 11 \}$ donc Card(A) =

2) Vocabulaire:

La réunion de deux ensembles A et B est l'ensemble de tous les éléments qui sont dans A ou dans B. On la note $A \cup B$.

L'intersection de deux ensembles A et B est l'ensemble de tous les éléments qui sont à la fois dans A et dans B. On la note $A \cap B$.

Deux ensembles sont dits disjoints si leur intersection est vide. A et B disjoints \Leftrightarrow A \cap B = \emptyset

3) Propriété admise :

Soit n un entier supérieur ou égal à 2 et A_1, A_2, \dots, A_n des ensembles finis deux à deux disjoints.

Alors: Card
$$(A_1 \cup A_2 \cup \cup A_n) = Card(A_1) + Card(A_2) + ... + Card(A_n) = \sum_{k=1}^{n} Card(A_k)$$

4) Produit cartésien de deux ensembles :

Soit A et B deux ensembles non vides.

Le produit cartésien de A et de B, noté $A \times B$ (se lit « A croix B »), est l'ensemble constitué des couples (x;y) où x est un élément de A et y un élément de B.

$$A \times B = \{(x; y), x \in A, y \in B\}$$

Exemple:

ATTENTION! Dans un couple, l'ordre est important!

(1; 2) n'est pas le même élément que (2; 1).

1

Propriété:

Soit A et B deux ensembles finis. Alors : Card $(A \times B) = \text{Card}(A) \times \text{Card}(B)$ <u>Démonstration</u> : (ex 68 p 47)

Définition:

Soit A un ensemble et n un entier naturel non nul.

On appelle *n*-uplet de A un élément de $A^n = A \times A \times ... \times A$, (A est n fois)

Propriété:

Soit A un ensemble fini et n un entier naturel non nul. Alors $Card(A^n) = (Card(A))^n$ <u>Démonstration</u>: Démonstration par récurrence ex 69 p 47.

Application:

Un immeuble est protégé par un digicode. Ce code est formé de 4,5 ou 6 chiffres de 0 à 9 et d'une lettre parmi les 3 lettres A, B ou C. Combien de codes peut-on former avec ce système ? **Réponse** :

II. Arrangements et permutations :

1) Définition d'une factorielle :

Soit *n* un entier naturel non nul.

On appelle factorielle de n le nombre : $n! = n \times (n-1) \times \times 2 \times 1$

Par convention, 0!=1

Exemple : 5! =

2) Définition d'un arrangement :

Soit A un ensemble fini non vide à n éléments et k un entier naturel inférieur ou égal à n.

Un arrangement de k éléments de A (ou k-arrangement de A) est un k-uplet d'éléments <u>distincts</u> de A.

Exemple:

3) Propriété:

Soit A un ensemble fini non vide à *n* éléments et k un entier naturel inférieur ou égal à *n*.

Le nombre de k-arrangements de A est égal à : $A_n^k = n \times (n-1) \dots \times (n-k+1) = \frac{n!}{(n-k)!}$

Démonstration :

4) Définition d'une permutation :

Soit A un ensemble fini non vide à n éléments.

Une permutation de A est un n-uplet d'éléments distincts de A.

Une permutation de A est en fait un *n*-arrangement de A.

Le nombre de permutations d'un ensemble fini non vide à n éléments est n!

$$A_n^n = n \times (n-1) \dots \times (n-n+1) = n!$$

Exemple:

Si $A = \{1; 2; 3\}$ les permutations de A sont:

Application:

Dans une classe 5 élèves doivent passer un oral. De combien de façons différentes peut-on organiser ces oraux , chaque élève étant interrogé une seule fois ?

Combien y-a-t-il de possibilités si le professeur n'a le temps d'interroger que 3 d'entre eux?

Solution

III. Combinaisons d'un ensemble fini :

1) Définition:

Une partie d'un ensemble A est un sous ensemble de A.

Tous les éléments d'une partie de A sont des éléments distincts de A.

Exemple

Si A= $\{1; 2; 3\}$ alors $\{1; 3\}; \{3\}; \{2; 3\}$ et \emptyset sont des parties de A.

2) Propriété:

Soit A un ensemble fini à n éléments. Le nombre de parties de A est égal à 2^n . Démonstration :

3) Définition d'une combinaison:

Soit A un ensemble fini à *n* éléments et k un entier naturel inférieur ou égal à *n*.

Une combinaison de k éléments de A est une partie de A de cardinal k.

Le nombre de combinaisons de k éléments parmi n est noté $\binom{n}{k}$. Il se lit "k parmi n".

C'est un coefficient binomial.

4) Propriétés des coefficients binomiaux:

Soit n et k deux entiers naturels tel que $k \le n$. Alors :

- 1) $\binom{n}{k} = \frac{n!}{(n-k)!k!}$ et $\binom{n}{k} = \binom{n}{n-k}$
- 2) Relation de Pascal : Si $1 \le k \le n-1$, $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$
- 3) De plus $\binom{n}{0} = 1$. Si $n \ge 1$, $\binom{n}{1} = n$ et $si \ n \ge 2$, $\binom{n}{2} = \frac{n(n-1)}{2}$

1)Démonstration du 1) partie 1

<u>Démonstration du 1) partie 2 exercice 94 page 50</u>

Démonstration de la relation de Pascal:

Démonstration des relations du 3):

5) Application : Le triangle de Pascal

n k	0	1	2	3	4	5	6	7
0								
1								
2								
3								
4								
5								
6								
7								

Remarque : Formule du binôme de Newton

Pour tous réels a et b, et pour tout entier naturel $n \ge 1$, $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$

Propriété:

Soit *n* un entier naturel. Alors $\sum_{k=0}^{n} {n \choose k} = 2^n$

<u>Démonstration</u>:

Application:

Dans une grille comportant des nombres de 0 à 9 et les lettres de A à F, il faut choisir 3 nombres et 2 lettres. Combien de grilles différentes existe-t-il ?

Solution: