Nom, Prénom:....

Mardi 28 Septembre 2021

TSpé DEVOIR SURVEILLE N°1(2h)

Calculette mode examen

Exercice 1: (3,5 points)

Entourer la bonne réponse .Une bonne réponse rapporte 0,5 point. Une mauvaise réponse n'enlève pas de point. L'absence de réponse n'est pas pénalisante. Aucune justification n'est attendue.

	Réponse A Réponse B		Réponse C
Dans \mathbb{R} , l'équation $5x^2 - 3x + 8 = 0$ a:	Aucune solution	Une solution	2 solutions
La fonction racine carrée est:	définie et dérivable sur $[0; +\infty[$	définie sur $[0; +\infty[$ et dérivable sur $]0; +\infty[$	définie et dérivable sur]0 ; + ∞[
f est une fonction définie sur les réels par $f(x)=(x^2+1)(3x-7)$. Alors $f'(x)=$	$9x^2 - 14x + 3$	$3x^2 - 14x - 3$	$9x^2 - 11x + 4$
h est une fonction définie sur $\mathbb{R}-\{0\}$ par $h(x)=4x^5-2x+\frac{3}{x}$. Alors h '(x) =	$20x^4 - 2 + \frac{3}{x^2}$	$20x^4 - 2 - \frac{3}{x^2}$	$16x^4 - 2 - \frac{3}{x^2}$
j est la fonction définie sur \mathbb{R} par $j(x)=x^2$. C_j est la courbe représentative de la fonction j dans un repère. L'équation de la tangente à C_j au point d'abscisse -1 est :	y = -2x - 2	y = -2x + 1	y = -2x - 1
g est une fonction définie et dérivable sur $[0; +\infty[$ par $g(x) = x\sqrt{x}$. Alors $g'(x) =$	$\frac{1}{2\sqrt{x}}$	$\frac{3}{2}x\sqrt{x}$	$2\sqrt{x}$

Exercice 2: (7 points)

La fonction f est la fonction définie sur [0; 6] par $f(x) = (10x - 5) e^{-x}$.

- 1) Dresser le tableau de variation de f sur [0; 6]. Préciser les extrémums et les valeurs aux bornes de l'intervalle de définition.
- 2) Etudier la convexité de f sur [0 ; 6] .
- 3) La courbe de f admet-elle un point d'inflexion sur { 0 ; 6] ? Si oui lequel ? Justifier.
- 3) Déterminer l'équation de la tangente à la courbe représentative de f au point d'abscisse 0.

Exercice 3: (6,5 points)

- 1. Soit g la fonction définie sur I = [-3; 10] par $g(x) = 2x^3 + 12x^2 + 2$
 - a) Etudier les variations de g sur l'intervalle I.
 - b) En déduire le signe de g(x) sur I.
- 2. Soit f la fonction définie sur I par $f(x) = \frac{x^3 2}{x + 4}$.
 - a) Justifier que f est dérivable sur I et calculer sa dérivée.
 - b) En s'aidant de la question précédente, déduire le signe de f'(x) sur I puis les variations de la fonction f.

Exercice 4: (3 points)

Simplifier les expressions suivantes.

A =
$$\frac{e^{-5}}{e^{-3} + 2x}$$
; B= $e^{-9} \times e^{-2x+4} \times e^{-8}$; C = $(e^{-4})^2 \times e^{-3x+2} \times \frac{1}{e^{-6}}$

Exercice 5: (5 points)

Résoudre dans IR:

1)
$$e^{-3x+5} = e^{5x+4}$$
 2) $e^{x^2+2x-3} = 1$

Exercice 6: (5 points)

Calculer la dérivée de chaque fonction définie et dérivable sur IR

$$f(x) = 4x^2 + 2x + 1 - 3e^x$$
 ; $g(x) = 2x^3 e^x$; $h(x) = \frac{e^x - 2}{e^x + 1}$

CORRECTION

Exercice 1:

	Réponse A Réponse B		Réponse C
Dans \mathbb{R} , l'équation $5x^2 - 3x + 8 = 0$ a: $\Delta = 9 - 80 = -71 < 0$	Aucune solution	Une solution	2 solutions
La fonction racine carrée est:	définie et dérivable sur [0 ; + ∞[Définie sur $[0; +\infty[$ et dérivable sur $]0; +\infty[$	définie et dérivable sur]0 ; + ∞[
f est une fonction définie sur les réels par $f(x)=(x^2+1)(3x-7)$. Alors $f'(x)=f$ est de la forme $u \times v$ $u'(x)=2x$; $v'(x)=3$	$9x^2 - 14x + 3$	$3x^2 - 14x - 3$	$9x^2 - 11x + 4$
h est une fonction définie sur \mathbb{R} -{0} par $h(x)=4x^5-2x+\frac{3}{x}$. Alors h '(x) =	$\frac{20x^4-2+\frac{3}{x^2}}{}$	$20x^4 - 2 - \frac{3}{x^2}$	$16x^4 - 2 - \frac{3}{x^2}$
j est la fonction définie sur \mathbb{R} par $j(x)=x^2$. C_j est la courbe représentative de la fonction j dans un repère. L'équation de la tangente à C_j au point d'abscisse -1 est : $y = j'(-1)(x+1) + j(-1)$ $j'(x) = 2x$ donc $j'(-1) = -2$ et $j(-1) = 1$	y = -2x - 2	y = -2x + 1	y = -2x - 1
g est une fonction définie et dérivable sur $[0; +\infty[$ par $g(x) = x \sqrt{x}$. Alors $g'(x) = g$ est de la forme $u \times v$ $u'(x)=1; v'(x)=\frac{1}{2\sqrt{x}}$	$\frac{1}{2 \cdot \sqrt{x}}$	$\frac{3}{2} \times \sqrt{x}$	2-√*

Exercice 2:

La fonction f est la fonction définie sur [0; 6] par $f(x) = (10x - 5) e^{-x}$.

1) Dresser le tableau de variation de f sur [0;6].

$$f'(x) = 10 e^{-x} - (10x - 5) e^{-x} = e^{-x} (10 - 10x + 5) = e^{-x} (-10x + 15)$$

Signe de f'(x): $e^{-x} > 0$ et $-10x + 15 \ge 0 \Leftrightarrow -10x \ge -15 \Leftrightarrow x \le \frac{15}{10} \Leftrightarrow x \le 1,5$

		10
X	0 1,5	6
Signe de $f'(x)$	+ 0 –	
Variations de f	-5 10 e ^{-1,5}	55 e ⁻⁶

2) Etudier la convexité de f sur [0;6].

$$f''(x) = -e^{-x} (-10x + 15) - 10 e^{-x} = e^{-x} (10x - 15 - 10) = e^{-x} (10x - 25)$$

Signe de $f''(x)$: $e^{-x} > 0$ et $10x - 25 \ge 0 \Leftrightarrow 10x \ge 25 \Leftrightarrow x \ge \frac{25}{10} \Leftrightarrow x \ge 2,5$

Sur [0; 2,5] f'' est négative donc f est concave.

Sur [2,5;6] f" est positive donc f est convexe.

- 3) La dérivée seconde de f s'annule et change de signe en x=2,5 donc la courbe présente un point d'inflexion d'abscisse 2,5 et d'ordonnée f(2,5)=20 e^{-2,5}.
- 4) Déterminer l'équation de la tangente à la courbe représentative de f au point d'abscisse 0. Cette équation est y = f'(0) (x 0) + f(0) avec f'(0) = 15 e⁰ = 15 et f(0) = -5 e⁰ = -5 Donc l'équation de cette tangente est y = 15 x 5

Exercice 3:

1. Soit g la fonction définie sur I par $g(x) = 2x^3 + 12x^2 + 2$ Variations de g sur l'intervalle I: $g'(x) = 6x^2 + 24x = 6x(x+4)$ $g'(x) = 0 \iff x = 0$ ou x = -4

X	-3	0		10
Signe de g '(x) on utilise le signe du trinôme, signe de a à l'extérieur des racines	_	0	+	
Variations de g	56	× 2 /	→	3202

Donc sur I, g admet un minimum qui est 4 donc g(x) > 0 ($car g(x) \ge 4$)

- 2. Soit f la fonction définie sur I = [-1; 10] par $f(x) = \frac{x^3 2}{x + 2}$ f est dérivable sur un intervalle où x + 2 ne s'annule pas. x + 2 = 0 pour x = -2donc f est dérivable sur I = [-1; 10] et $f'(x) = \frac{3x^2(x+4) - 1(x^3 - 2)}{(x+4)^2} = \frac{2x^3 + 12x^2 + 2}{(x+2)^2} = \frac{g(x)}{(x+4)^2}$
- 3. En s'aidant de la question précédente, déduire le signe de f'(x) sur I puis les variations de la fonction f g est positive sur I et $(x+4)^2 > 0$ sur \mathbb{R} donc f(x) > 0 sur I donc f est strictement croissante sur I.

Exercice 4:
$$A = \frac{e^{-5}}{e^{-3} + 2x} = e^{-5} + 3 - 2x = e^{-2x - 2}$$
 $B = e^{-9} \times e^{-2x + 4} \times e^{-8} = e^{-9 - 2x + 4 + 8} = e^{-2x + 3}$ $C = (e^{-4})^2 \times e^{-3x + 2} \times \frac{1}{e^{-6}} = e^{-8} \times e^{-3x + 2} \times e^{-6} = e^{-8 + 3x + 2 + 6} = e^{3x}$

Exercise 5:
$$\# e^{a} = e^{b} \Leftrightarrow a = b$$
 donc $e^{-3x+5} = e^{5x+4} \Leftrightarrow -3x+5 = 5x+4 \Leftrightarrow x = \frac{1}{8}$ $S = \{\frac{1}{8}\}$
 $\# e^{x^{2}+2x-3} = 1 \Leftrightarrow e^{x^{2}+2x-3} = e^{0} \Leftrightarrow x^{2}+2x-3 = 0$
 $\Delta = b^{2}-4ac = 4+12 = 16$
 $x_{1} = \frac{-b-\sqrt{\Delta}}{2a} = \frac{-2-4}{2} = -3 \text{ et } x_{2} = \frac{-b-\sqrt{\Delta}}{2a} = \frac{-2-4}{2} = 1$ $S = \{-3; 1\}$

Exercice 6: