Chapitre 1 Ensembles de nombres-Intervalles-Arithmétique

I. Les ensembles de nombres

a) Les entiers naturels : Les entiers naturels sont les entiers positifs et 0.

Par exemple, 0, 1, 2 et 5676 sont des entiers naturels. Par contre – 45 n'en est pas un. Il existe une infinité d'entiers naturels. L'ensemble des entiers naturels est noté **IN**.

b) Les entiers relatifs : Ce sont des entiers naturels précédés ou non du signe " - ".

L'ensemble des entiers relatifs est noté \mathbb{Z} . -3 et 3 sont des entiers relatifs opposés.

c) <u>Les nombres décimaux</u> : Un nombre décimal est un nombre dit « à virgule », c'est le quotient (ou le produit) d'un entier relatif par une puissance de 10.

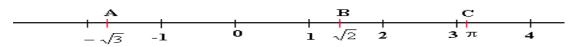
Il est de la forme $\frac{a}{10}$ ou $a \times 10$ avec $a \in \mathbb{Z}$ et $n \in \mathbb{N}$.

L'ensemble des nombres décimaux est noté ID.

d) Les nombres rationnels : Un nombre rationnel est le quotient de deux entiers relatifs.

L'ensemble des nombres rationnels est noté **Q**

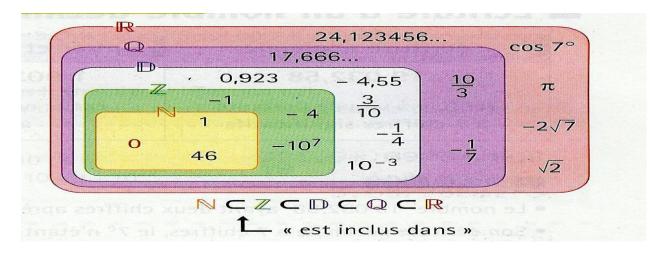
e) <u>Les nombres réels</u> : L'ensemble des <u>nombres réels</u> est l'ensemble des abscisses des points d'une droite graduée appelée droite numérique. Il est noté *R*



Sur ce dessin, le point A a pour abscisse $-\sqrt{3}$ alors que les nombres réels positifs $\sqrt{2}$ et π sont les abscisses des points B et C, on note A($-\sqrt{3}$) B($\sqrt{2}$) et C(π)

Remarque: Certains nombres réels, par exemple, $\sqrt{3}$, π ou cos (7°), ne peuvent pas s'écrire comme le quotient de deux entiers relatifs: ce sont des nombres **irrationnels**

A RETENIR:



Exemples:

	N	\mathbb{Z}	D	Q	\mathbb{R}
$-\frac{7}{2} = -3,5$	∉	∉	lacksquare	€	€
$4,5 \times 10^6 = 4\ 500\ 000$	€	€	\cup	€	€
$-\sqrt{81} = -9$	∉	€	€	€	€
2π+1	∉	∉	∉	∉	€
$\sqrt{3}$	∉	∉	∉	∉	€
<u>5</u> 3	∉	∉	€	€	€
$\frac{30}{3} = 10$	€	€	€	€	€
$(-3)^3 = -27$	∉	€	€	€	€

¤

Utilisation du symbole \in ou \notin :

$$-12 \in \mathbf{Z}$$
 ; $\frac{1}{3} \notin \mathbf{Z}$; $(-2)^2 \in \mathbb{ID}$; $\sqrt{5} \notin \mathbb{IN}$

II. Arithmétique :

<u>**Définition**</u>: Soit a et b deux entiers relatifs.

On dit que b est un multiple de a, ou que a est un diviseur de b

s'il existe un entier relatif k tel que b=k×a.

Exemples: 36 est un multiple de 12, puisque $36=3\times12$.

15 est un diviseur de 45 car $45 = 3 \times 15$

Proposition: Si m et n sont deux multiples de a, alors m + n est un multiple de a.

Démonstration:

m multiple de a \Leftrightarrow il existe un entier relatif k tel que $m = k \times a$ n multiple de a \Leftrightarrow il existe un entier relatif k' tel que $n = k' \times a$

Calcul de m + n:

$$m + n = k \times a + k' \times a = a (k + k')$$

donc $m + n$ est un multiple de a

Définitions:

- Un nombre entier est pair s'il est divisible par 2. Il s'écrit donc n = 2k, avec k un entier.
- Un nombre entier est **impair** s'il n'est pas divisible par 2. Il s'écrit alors n = 2k + 1, avec k un entier.

Propositions: \(\sigma \) Soit n un entier. \(n^2 \) est pair si et seulement si alors n est pair.

Soit n un entier. n² est impair si et seulement si alors n est impair.

Démonstration:

 $partial sin est pair alors n = 2k. D'où n^2 = (2k)^2 = 4k^2 = 2k^2 \times 2.$

Donc n² est pair (c'est un multiple de 2)

partial sin est impair alors n=2k+1. D'où $n^2=(2k+1)^2=(2k)^2+2\times 2k\times 1+1^2=4k^2+4k+1$.

Donc n^2 est impair [il est de la forme $2(2k^2+2k)+1$]

<u>Définition</u>: Un nombre entier relatif n est **premier** s'il est différent de 1 et admet exactement deux diviseurs positifs, 1 et lui-même.

Exemples: 7 est un nombre premier mais 15 ne l'est pas, car ses diviseurs positifs sont 1,3 et 5.

<u>Propriété</u>: Soit n un entier naturel. Si n n'est pas un entier premier alors il existe au moins un entier premier p diviseur de n tel que p soit compris entre 2 et \sqrt{n}

Exemple: 39 n'est pas un nombre premier : $\sqrt{39} \approx 6.2$

39 admet au moins un diviseur inférieur ou égal à $6:39=3\times13$

II. Les intervalles

Les intervalles réels sont des parties de IR

Dans le tableau ci-dessous, a et b sont deux réels tels que $a \le b$.

Notation	Représentation sur la droite réelle	Ensemble des réels x tels que
[a;b]	a b	a≤ <i>x</i> ≤ b
[a;b[a 6	a ≤ <i>x</i> < b
] a; b]	a b	$a < x \le b$
] a; b[a b	a < x < b
]-∞;b]		<i>x</i> ≤ b
] - ∞ ; b [<i>x</i> < b
[a; +∞[a 	$a \le x$
] a; + ∞[a 	a < x

Remarques:

Le fait de dire qu'un intervalle est ouvert en b signifie que le réel b ne fait pas partie de celui-ci.

Par contre, s'il y avait été fermé alors il en aurait fait partie.

Les deux réels qui délimitent un intervalle sont appelés bornes de l'intervalle.

La notation $+\infty$ se lit "plus l'infini". Les intervalles sont toujours ouverts du côté de $-\infty$ ou $+\infty$.

$$\mathbb{R}=]-\infty;+\infty[$$

Si un intervalle est réduit à un seul nombre réel a on le note { a }. L'ensemble vide se note ∅.

Réunion et intersection d'intervalles :

On note $I \cap J$ l'intersection des deux intervalles I et J.

Elle contient tous les nombres réels qui sont à la fois dans I et dans J.

On note $I \cup J$ la réunion des deux intervalles I et J.

Elle contient tous les nombres réels qui sont soit dans I soit dans J.

Exemple:
$$I =]-\infty; 5]$$
 et $J =]-2; 18[$ $I \cap J =]-2; 5]$

$$I \cap J =] - 2;5]$$

et
$$I \cup J =] - \infty$$
; 18 [.

Exercice 1: Compléter le tableau suivant (les réponses seront données, si possible, sous forme d'un intervalle)

А	В	$A \cap B$	$A \cup B$
] - ∞ ; 4]] 3 ; 10]] 3 ; 4]] – ∞ ; 10]
] - ∞ ; 4]] 4; 9]	Ø] – ∞ ; 9]
]-8;-4]	[-6; 4]	[-6;-4]] – 8; 4]
] – 5 ; +∞ [[-10;8]]-5;8]	[− 10 ; + ∞ [
] -∞ ; 15]	[7;+∞[[7;15]	IR

1)
$$2x - 1 \le 2$$

2)
$$2-x \ge 5$$

3)
$$4x + 7 > 9$$

4)
$$x-7 < 3x + 3$$

$$2x \leq 3$$

$$-x \ge 3$$

$$x - 3x < 10$$

$$x \leq \frac{3}{2}$$

$$x \leq -3$$

$$x > \frac{2}{4}$$

$$-2x < 10$$

$$S =] - \infty; \frac{3}{2}]$$

$$S =] - \infty; -3]$$

$$x>\frac{1}{2}$$

$$x > -5$$

$$S =]\frac{1}{2}; + \infty[$$

$$S =] - 5; + \infty[$$