A rendre avant le 17 Septembre 2024

TSpé DM1 Facultatif

Exercice 1: Simplifier les écritures suivantes :

$$A = (e^x)^3 \times e^{-2x+4} \times e^{7x+1}$$

$$B = \frac{e^{-4x+8} \times (e^{-x})^2}{e^{3x^2-x+4}}$$

A=
$$(e^x)^3 \times e^{-2x+4} \times e^{7x+1}$$
 B= $\frac{e^{-4x+8} \times (e^{-x})^2}{e^{3x^2-x+4}}$ C= $(e^{2x-1})^4 \times e^{-3x+4} \times e^{7x+2}$ D= $\frac{e^{-7x+8} \times (e^{-3x+4})^2}{e^{3x^2-x+4} \times e^x}$

$$D = \frac{e^{-7x+8} \times (e^{-3x+4})^2}{e^{3x^2-x+4} \times e^x}$$

Exercice 2: Résoudre dans R les équations ou inéquations suivantes :

1)
$$e^{3-4x} =$$

1)
$$e^{3-4x} = 1$$
 2) $e^{2x^2+3} = e^{7x}$ 3) $e^{x-7} = -1$ 4) $e^{2x^2+3} = e^{-1}$

3)
$$e^{x-7} = -1$$

4)
$$e^{2x^2+3} = e^{-1}$$

5)
$$e^{x^2} < -3$$

5)
$$e^{x^2} < -3$$
 6) $(e^x)^3 \ge e^{x+6}$ 7) $e^x > \frac{1}{e^x}$

7)
$$e^{x} > \frac{1}{e^{x}}$$

8)
$$(e^x + 4)(e^x - 1) > 0$$

Exercice 3: Déterminer les dérivées des fonctions suivantes définies et dérivables sur un intervalle I :

1)
$$f(x) = (x^2 - 2x)e^x$$
 $I = \mathbb{I}$

1)
$$f(x) = (x^2 - 2x)e^x$$
 $I = \mathbb{R}$ 2) $f(x) = 5e^x - 3e^{2x}$ $I = \mathbb{R}$ 3) $f(x) = \frac{2e^x - 3}{e^x + 3}$ $I = \mathbb{R}$

3)
$$f(x) = \frac{2e^x - 3}{e^x + 3}$$
 $I = \mathbb{F}$

4)
$$f(x) = 7x - 8 + 2e^{-x}$$
 $I = \mathbb{R}$ 5) $f(x) = e^{-3x^2 + 7}$ $I = \mathbb{R}$

5)
$$f(x) = e^{-3x^2 + 7}$$
 $I = \mathbb{R}$

6)
$$f(x) = (2e^x + 3)(e^x - 5)$$
 $I = \mathbb{R}$

7)
$$f(x) = \frac{e^x - 5}{2e^x + 1}$$
 $I = \mathbb{R}$

8)
$$f(x) = (7e^{-x} + 6)^2$$
 $I = \mathbb{R}$

8)
$$f(x) = (7e^{-x} + 6)^2$$
 $I = \mathbb{R}$ 9) $f(x) = 4x^5 - 3x^3 + \frac{4}{x} - 3\sqrt{x}$
 $I = [0; +\infty[$

Exercice 4:

f est une fonction définie sur les réels par $f(x) = (-3x + 4) e^x$.

On note C_f sa courbe représentative dans un repère orthonormé.

- 1. Etudier les variations de f sur [-2; 3].
- 2. Déterminer l'équation de la tangente à C_f au point d abscisse 0.
- 3. On donne $g(x) = 2x e^x$. On note C_g sa courbe représentative dans un repère orthonormé. Etudier la position relative des deux courbes C_f et C_g sur [-2;3].

CORRECTION DM1

Exercice 1 : Simplifier les écritures suivantes :

A=
$$(e^x)^3 \times e^{-2x+4} \times e^{7x+1} = e^{3x} \times e^{5x+5} = e^{8x+5}$$

$$B = \frac{e^{-4x+8} \times (e^{-x})^2}{e^{3x^2 \cdot x + 4}} = \frac{e^{-4x+8} \times e^{-2x}}{e^{3x^2 \cdot x + 4}} = \frac{e^{-6x+8}}{e^{3x^2 \cdot x + 4}} = e^{-3x^2 \cdot 5x + 4}$$

C=
$$(e^{2x-1})^4 \times e^{-3x+4} \times e^{7x+2} = e^{8x-4} \times e^{4x+6} = e^{12x+2}$$

$$D = \frac{e^{-7x+8} \times (e^{-3x+4})^2}{e^{3x^2 \cdot x + 4} \times e^x} = \frac{e^{-7x+8} \times e^{-6x+8}}{e^{3x^2 \cdot 4}} = \frac{e^{-13x+16}}{e^{3x^2 + 4}} = e^{-3x^2 - 13x + 12}$$

Exercice 2 : Résoudre dans R les équations ou inéquations suivantes :

1)
$$e^{3-4x} = 1$$

 $e^{3-4x} = e^0$
 $3 - 4x = 0$
 $x = \frac{3}{4}$
 $S = \{\frac{3}{4}\}$

2)
$$e^{2x^2+3} = e^{7x}$$

 $2x^2 + 3 = 7x$
 $2x^2 - 7x + 3 = 0$
 $\Delta = 49 - 24 = 25$
 $x_1 = \frac{7-5}{4} = \frac{1}{2} \text{ et } x_2 = \frac{7+5}{4} = 3$
 $S = \{\frac{1}{2}; 3\}$

3)
$$e^{x-7} = -1$$

 $S = \emptyset$

4)
$$e^{2x^2+3} = e^{-1}$$

 $2x^2 + 3 = -1$
 $2x^2 = -4$
 $x^2 = -2$ Or $x^2 \ge 0$ sur R
donc $\mathbf{S} = \emptyset$

5)
$$e^{x^2} < -3$$
 Or $e^{x^2} > 0$ sur R donc $\mathbf{S} = \emptyset$

6)
$$(e^x)^3 \ge e^{x+6}$$

 $e^{3x} \ge e^{x+6}$
 $3x \ge x + 6$
 $2x \ge 6$
 $x \ge 3$
 $\mathbf{S} = [3; +\infty[$

7)
$$e^{x} > \frac{1}{e^{x}}$$

 $e^{x} > e^{-x}$
 $x > -x$
 $2x > 0$
 $x > 0$
 $S = \mathbf{0}$; $+\infty$

8)
$$(e^{x} + 4)(e^{x} - 1) > 0$$

 $e^{x} + 4 \ge 0$ $e^{x} - 1 \ge 0$
 $e^{x} \ge -4$ $e^{x} \ge 1$
 $S = \mathbb{IR}$ $e^{x} \ge e^{0}$
 $x \ge 0$

X	$-\infty$	0		+ ∞
signes de $e^x + 4$	+		+	
signes de $e^x - 1$	_	0	+	
signes de $(e^x + 4)(e^x - 1)$	_	0	+	

$$S =]0; +\infty[$$

Exercice 3:

Déterminer les dérivées des fonctions suivantes définies et dérivables sur les réels

1)
$$f(x) = (x^2 - 2x)e^x$$

 $u(x) = x^2 - 2x$ $u'(x) = 2x - 2$
 $v(x) = e^x$ $v'(x) = e^x$
 $f'(x) = (2x - 2)e^x + (x^2 - 2x)e^x$
 $= (2x - 2 + x^2 - 2x)e^x$
 $= (x^2 - 2)e^x$

2)
$$f(x) = 5e^{x} - 3e^{2x}$$

 $f'(x) = 5e^{x} - 3 \times 2 e^{2x}$
 $= 5e^{x} - 6e^{2x}$
 $= e^{x} (5 - 6e^{x})$

3)
$$f(x) = \frac{2e^{x}-3}{e^{x}+3}$$

$$u(x) = 2e^{x} - 3 \qquad u'(x) = 2e^{x}$$

$$v(x) = e^{x} + 3 \qquad v'(x) = e^{x}$$

$$f'(x) = \frac{2e^{x} (e^{x} + 3) - (2e^{x} - 3)e^{x}}{(e^{x} + 3)^{2}}$$

$$= \frac{e^{x} (2e^{x} + 6 - 2e^{x} + 3)}{(e^{x} + 3)^{2}}$$

$$= \frac{9e^{x}}{(e^{x} + 3)^{2}}$$

4)
$$f(x) = 7x - 8 + 2e^{-x}$$

 $f'(x) = 7 - 2e^{-x}$

5)
$$f(x) = e^{-3x^2+7}$$

 $f'(x) = -6x e^{-3x^2+7}$

6)
$$f(x) = (2e^{x} + 3)(e^{x} - 5)$$
7) $f(x) = \frac{e^{x} - 5}{2e^{x} + 1}$
8) $f(x) = (7e^{-x} + 6)^{2}$

$$u(x) = 2e^{x} + 3 \quad u'(x) = 2e^{x} \qquad u(x) = e^{x} - 5 \quad u'(x) = e^{x} \qquad u(x) = 7e^{-x} + 6 \quad u'(x) = -7e^{-x}$$

$$v(x) = e^{x} - 5 \quad v'(x) = e^{x} \qquad v(x) = 2e^{x} + 1 \quad v'(x) = 2e^{x} \qquad f'(x) = 2 \times (-7e^{-x}) \times (7e^{-x} + 6)$$

$$f'(x) = \frac{e^{x} (2e^{x} + 1) - (e^{x} - 5)(2e^{x})}{(2e^{x} + 1)^{2}} \qquad f'(x) = -14e^{-x} \times (7e^{-x} + 6)$$

$$= (2e^{x} - 10 + 2e^{x} + 3)e^{x} \qquad = \frac{e^{x} (2e^{x} + 1 - 2e^{x} + 10)}{(2e^{x} + 1)^{2}}$$

$$= (4e^{x} - 7)e^{x} \qquad = \frac{11e^{x}}{(2e^{x} + 1)^{2}}$$

9)
$$f(x) = 4x^5 - 3x^3 + \frac{4}{x} - 3\sqrt{x}$$

 $f'(x) = 4 \times 5x^4 - 3 \times 3x^2 + 4 \times \frac{-1}{x^2} - 3 \times \frac{1}{2\sqrt{x}}$
 $f'(x) = 20 x^4 - 9 x^2 - \frac{4}{x^2} - \frac{3}{2\sqrt{x}}$

Exercice 4:

f est une fonction définie sur les réels par $f(x) = (-3x + 4) e^x$.

On note C_f sa courbe représentative dans un repère orthonormé.

1. Etudier les variations de f sur les réels

$$u(x) = -3x + 4 u'(x) = -3$$

$$v(x) = e^{x} v'(x) = e^{x}$$

$$f'(x) = -3e^{x} + (-3x + 4)e^{x} = (-3 - 3x + 4)e^{x} = (-3x + 1)e^{x}$$

Signe de f'(x): e^x est strictement positif sur \mathbb{R} donc f'(x) est du signe de -3x + 1.

$$-3x + 1 \ge 0 \Leftrightarrow -3x \ge -1 \Leftrightarrow x \le \frac{1}{3}$$

Tableau de variation de f: $f(\frac{2}{3}) = (-3 \times \frac{2}{3} + 4) = 2$; $f(-2) = 10e^{-2}$; $f(3) = -5e^{3}$

х	-2 $\frac{1}{3}$	3
signes de $f'(x)$	+ 0 –	
variations de f	→3 e ^{1/3}	$-5e^3$

2. Déterminer l'équation de la tangente à C_f au point d'abscisse 0.

$$y = f'(0)(x+0) + f(0)$$

 $y = x + 4$

3.On donne $g(x) = 2x e^x$. On note C_g sa courbe représentative dans un repère orthonormé.

Etudier la position relative des deux courbes C_f et C_g sur [-2;3].

Pour étudier la position relative de deux courbes représentatives des fonctions f et g, il faut étudier le signe de la différence f(x) - g(x).

Si cette différence est positive alors f(x) > g(x) donc la courbe représentative de f est au-dessus de celle de g. Si cette différence est négative alors f(x) < g(x) donc la courbe représentative de f est au-dessous de celle de g. Si cette différence est nulle alors f(x) = g(x) donc la courbe représentative de f et celle de g sont sécantes.

$$f(x) - g(x) = (-3x + 4) e^x - 2x e^x = (-3x + 4 - 2x) e^x = (-5x + 4) e^x$$

Signe de $f(x) - g(x)$: $e^x > 0$ sur \mathbb{R} et $-5x + 4 > 0 \Leftrightarrow -5x > -4 \Leftrightarrow x < \frac{4}{5}$
Donc sur $[-2; \frac{4}{5}[f(x) - g(x) > 0]$ donc $f(x) > g(x)$ donc C_f est au-dessus de C_g .
sur $[\frac{4}{5}; 3]$ $f(x) - g(x) < 0$ donc $f(x) < g(x)$ donc C_f est au-dessous de C_g .
En $x = \frac{4}{5}$ C_f et C_g sont sécantes en un point $A(\frac{4}{5}; \frac{8}{5}e^{4/5})$.