LES FONCTIONS DE REFERENCE

I. La fonction carré:

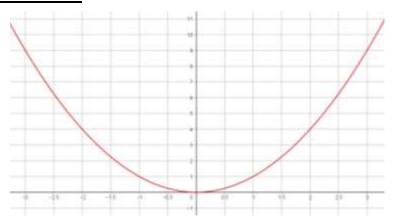
1) Définition :

La fonction carré est la fonction définie sur R par $f(x) = x^2$.

2) Tableau de valeurs :

х	-3	-2	-1	0	1	2	3
f(x)							

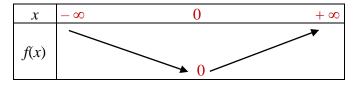
3) Courbe représentative :



Sa représentation graphique est une

4) Sens de variation de la fonction carré

Tableau de variation:



La fonction carré est

Le minimum de la fonction carré est Il est atteint pour

On peut donc dire que pour tout x,

Ordre et fonction carré:

2 < 5 donc $2^2 < 5^2$

car la fonction carré est strictement croissante sur $[0; +\infty[$, elle ne perturbe pas l'ordre.

-6 < -3 donc $(-6)^2 > (-3)^2$

car la fonction carré est strictement décroissante sur] $-\infty$; 0], elle perturbe l'ordre.

Deux nombres positifs sont rangés dans le même ordre que leurs carrés. On dira que la fonction carré conserve l'ordre sur $[0; +\infty[$

Deux nombres négatifs sont rangés dans le sens inverse de leurs carrés. On dira que la fonction carré inverse l'ordre sur $]-\infty$; 0].

Application:

Résoudre algébriquement (par le calcul):

$$x^2 = 0$$
 ; $x^2 = 5$; $x^2 = -3$; $x^2 > 0$; $x^2 < 6$; $x^2 \ge 4$; $x^2 = 2x - 1$

II. La fonction inverse :

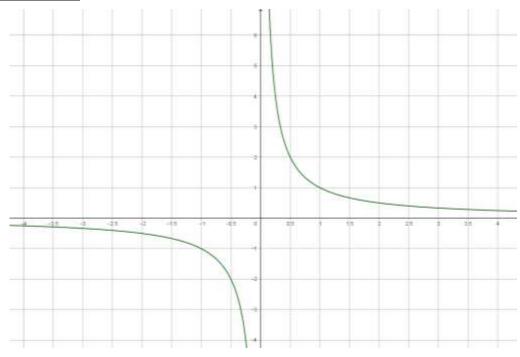
1) Définition:

La fonction inverse est la fonction définie sur \mathbb{R} privé de 0, noté $\mathbb{R}-\{0\}$ ou \mathbb{R}^* ou $]-\infty$; 0 [\cup] 0; $+\infty$ [par $f(x)=\frac{1}{x}$. 0 est la valeur interdite de la fonction inverse.

2) Tableau de valeurs :

х	-4	-2	-1	-0,8	-0,5	-0,25	0,25	0,5	0,8	1	2	4
f(x)												

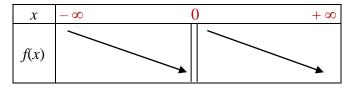
3) Courbe représentative :



Sa représentation graphique est une

4) Sens de variation de la fonction inverse

Tableau de variation:



La fonction inverse est

Ordre et fonction inverse:

$$2 < 5 \qquad \text{donc} \quad \frac{1}{2} > \frac{1}{5} \qquad \text{car la fonction inverse est strictement décroissante sur }] 0; +\infty [.$$

$$-6 < -3 \quad \text{donc} \quad -\frac{1}{6} > -\frac{1}{3} \quad \text{car la fonction inverse est strictement décroissante sur }] -\infty; 0 [.$$

La fonction inverse perturbe l'ordre sur $]-\infty \ ; 0 [$ et sur $] \ 0 \ ; +\infty [$

Application:

Résoudre algébriquement :

$$\frac{1}{x} = 0$$
 ; $\frac{1}{x} = 1$; $\frac{1}{x} = -2$; $\frac{1}{x} > 3$; $\frac{1}{x} < -1$; $\frac{1}{x} \ge -\frac{1}{2}$; $\frac{1}{x} = -x + 2$

III. La fonction racine carrée :

1) Généralités:

La racine carrée d'un nombre réel **positif** x est le nombre réel **positif** dont le carré est x. Si $x \ge 0$ alors $\sqrt{x} = a$ avec $a \ge 0$ et $a^2 = x$

Exemple:
$$\sqrt{4} = 2 \text{ car } 2^2 = 4 \text{ et } 2 > 0$$

Attention!
$$\sqrt{4} \neq -2$$
 car $-2 < 0$ pourtant $(-2)^2 = 4$

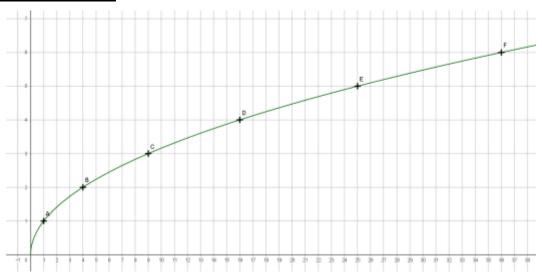
L'ensemble de définition de la fonction racine carrée est $[0; +\infty]$

La racine carrée d'un réel négatif n'existe pas!

2) Tableau de valeurs :

х	0	1	4	9	16	25	36
f(x)	0	1	2	3	4	5	6

3) Courbe représentative :



4) Sens de variation de la fonction racine carrée

Tableau de variation:

Х	0	+ ∞
f(x)	0	

La fonction racine carrée est strictement croissante sur $[0; +\infty[$

Le minimum de la fonction racine carrée est 0.

Il est atteint pour x = 0.

On peut donc dire que pour tout x, $\sqrt{x} \ge 0$

Ordre et fonction racine carrée :

$$2 < 5$$
 donc $\sqrt{2} < \sqrt{5}$

car la fonction racine carrée est strictement croissante sur $[0~;~+\infty~[~,~$ elle ne perturbe pas l'ordre.

F.T.

Deux nombres positifs sont rangés dans le même ordre que leurs racines carrées. On dira que la fonction racine carrée conserve l'ordre sur $[0; +\infty[$

Application:

Résoudre algébriquement (par le calcul) :

$$\sqrt{x} = 0$$
 ; $\sqrt{x} = 5$; $\sqrt{x} = -3$; $\sqrt{x} > 0$; $\sqrt{x} < 6$; $\sqrt{x} \ge 4$

IV. La fonction cube:

1) a) Définition :

La fonction cube est la fonction définie sur R par $f(x) = x^3 = x \times x \times x$.

b) Exemples:

- puisque $2^3 = 2 \times 2 \times 2 = 8$, le cube de 2 vaut 8.
- le cube de -3 est $(-3) \times (-3) \times (-3) = -3 \times 3 \times 3 = -27$. (le produit de trois nombres négatifs est négatif). Le cube de -3 se note $(-3)^3$ et on a $(-3)^3 = -27$.
- REMARQUE : ne pas confondre $(-3)^3$ et -3^3 , même si le résultat est le même . $(-3)^3$ est le cube de -3 et -3^3 est l'opposé du cube de 3.
- Utiliser sa calculatrice pour effectuer les calculs suivants :

$$-2.5^3 = \dots$$
 $(-2.5)^3 = \dots$ $(-2.5)^2 = \dots$ $(-2.5)^2 = \dots$ Compléter :

x	- 10	$\frac{1}{3}$	$\frac{3}{4}$	0	$\sqrt{2}$	-1,4	$2-\frac{1}{3}$
le cube de x							

2) Tableau de valeurs :

х	– 3	-2	-1	0	1	2	3
f(x)							

3) Courbe représentative :

Sa représentation graphique est

4) Sens de variation de la fonction cube

Tableau de variation:

X	
f(x)	

La fonction cube est	• • • • •

Ordre et fonction cube :

$$2 < 5$$
 donc $2^3 < 5^3$

car la fonction cube est strictement croissante sur $[0; +\infty[$, elle ne perturbe pas l'ordre.

$$-6 < -3$$
 donc $(-6)^3 < (-3)^3$

car la fonction cube est strictement croissante sur $]-\infty$; 0], elle ne perturbe pas l'ordre.

Deux nombres positifs sont rangés dans le même ordre que leurs cubes.

On dira que la fonction cube conserve l'ordre sur $[0; +\infty[$

Deux nombres négatifs sont rangés dans le même ordre que leurs cubes.

On dira que la fonction cube conserve l'ordre sur $]-\infty$; 0].

Si a et b sont deux réels quelconques, leurs cubes sont rangés dans le même ordre.

$$a < b \Leftrightarrow a^3 < b^3$$

Applications:

Exercice 1: On donne
$$a = (-2,1)^3$$
, $b = -3,5^3$, $c = (\frac{2}{3})^3$ et $d = (\sqrt{7})^3$.

Comparez sans les calculer ces 4 réels .

Exercice 2: L'arête d'un cube est notée a. On sait que 4,32 < a < 4,37 en cm.

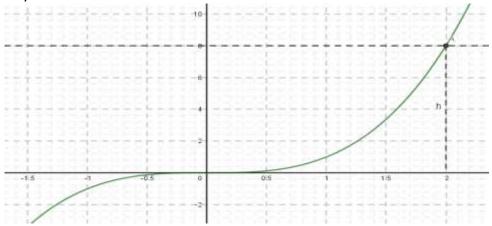
Déterminer un encadrement du volume V de ce solide en mm³ (encadrement à l'aide de décimaux arrondis au dixième).

5) Résolution de l'équation x^3 = a où a est un nombre connu.

Exemple 1:

a = 8. Résolvons $x^3 = 8$. Il s'agit de déterminer tous les nombres dont le cube vaut 8.

Il ne peut pas y en avoir plusieurs solutions puisque la fonction cube est strictement croissante sur IR. La courbe représentative de la fonction cube est coupée une seule fois par la droite horizontale d'équation y = 8.



 x^3 = 8 a une seule solution qui est la valeur 2, c'était facile...

Vocabulaire: On dit que 2 est la racine cubique de 8.

Notations : il y a deux possibilités

ightharpoonup la racine cubique de 8 se note $\sqrt[3]{8}$.

➤ la racine cubique de 8 se note 8 1/3

explication : $8^{\,1/3}\,$ est la racine cubique de $8\,$ donc son cube vaut $8\,$.

en effet $(8^{1/3})^3 = 8^{1/3 \times 3} = 8^1 = 8$

(cohérence avec les règles de calculs connus sur les exposants entiers)

<u>Généralisation</u>: La racine cubique de a est **LE** nombre dont le cube vaut a , il se note $\sqrt[3]{a}$ ou $a^{1/3}$.

> $\sqrt{125}$ = 5 puisque 5^3 = 125.

 \triangleright la racine cubique de 40 est $\sqrt[3]{40} = 40^{1/3}$

De plus $3,41^3 = 39,651821$ et que $3,42^3 = 40,001688$

donc $\sqrt[3]{40}$ est comprise entre les valeurs 3,41 et 3,42.

> savoir calculer une racine cubique avec sa calculatrice.

 $\sqrt[3]{10\,000} \approx 21,54$ au centième près.