Exercice 1:

La suite (u_n) est une suite arithmétique de raison r = 4 et de premier terme $u_0 = -3$.

- 1) Calculer les 4 premiers termes de la suite.
- 2) Quel est le sens de variation de la suite (u_n) ? Justifier.
- 3) Combien vaut u₈ ? u₂₄ ?

Exercice 2:

La suite (u_n) est une suite arithmétique de raison $r = -\frac{1}{3}$ et de premier terme $u_0 = 5$.

- 1) Calculer les 4 premiers termes de la suite.
- 2) Quel est le sens de variation de la suite (u_n) ? Justifier.
- 3) Combien vaut u₇ ? u₁₉ ?

Exercice 3:

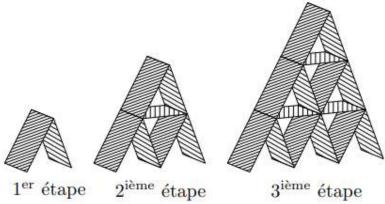
La suite (u_n) est une suite arithmétique de raison r = -5. On donne $u_4 = 2$.

- 1) Calculer u_3 , u_5 , u_2 , u_1 , u_0 et u_9 .
- 2) Exprimer u_{n+1} en fonction de u_n .
- 3) Si on représentait la suite dans un repère, comment seraient les points ?

Exercice 4:

On donne $u_n = 2n - 4$, pour tout n entier naturel.

- 1) Calculer les quatre premiers termes.
- 2) Conjecturer la nature de la suite.
- 3) Calculer u_{n+1} en fonction de n.
- 4) Calculer $u_{n+1} u_n$ et conclure.


Exercice 5:

On donne les termes suivants : $-\frac{1}{2}$; $\frac{3}{14}$; $\frac{13}{14}$; $\frac{23}{14}$

- 1) Cette suite semble-elle arithmétique ? Justifier. Si oui, préciser la raison et le premier terme.
- 2) Calculer le cinquième et le huitième terme de cette suite.

Exercice 6:

On considère la construction d'un château de cartes.

On appelle u_n le nombre de cartes nécessaires pour l'étape n. Ainsi $u_1 = 2$.

- 1) Donner la valeur de u₂ et u₃.
- 2) Combien de cartes sont necessaires à l'étape 4 ? à l'étape 5 ?
- 3) La suite (u_n) est-elle arithmétique ? Si oui, préciser sa raison et son premier terme.

Exercice 1:

La suite (u_n) est une suite arithmétique de raison r = 4 et de premier terme $u_0 = -3$.

1) Calculer les 4 premiers termes de la suite.

$$u_0 = -3$$
; $u_1 = u_0 + r = -3 + 4 = 1$; $u_2 = u_1 + r = 1 + 4 = 5$; $u_3 = u_2 + r = 5 + 4 = 9$

2) Quel est le sens de variation de la suite (u_n) ? Justifier.

 (u_n) est une suite arithmétique de raison r = 4, positive, donc (u_n) est une suite croissante.

3) Combien vaut u₈ ? u₂₄ ?

$$u_8 = u_0 + 8r = -3 + 8 \times 4 = 29$$
; $u_{24} = u_0 + 24r = -3 + 24 \times 4 = 93$

Exercice 2:

La suite (u_n) est une suite arithmétique de raison $r = -\frac{1}{3}$ et de premier terme $u_0 = 5$.

1) Calculer les 4 premiers termes de la suite.

$$u_0 = 5$$
; $u_1 = u_0 + r = 5 - \frac{1}{3} = \frac{14}{3}$; $u_2 = u_1 + r = \frac{14}{3} - \frac{1}{3} = \frac{13}{3}$; $u_3 = u_2 + r = \frac{13}{3} - \frac{1}{3} = 4$

2) Quel est le sens de variation de la suite (un) ? Justifier.

 (u_n) est une suite arithmétique de raison $r=-\frac{1}{3}$, négative, donc (u_n) est une suite décroissante.

3) Combien vaut u₇ ? u₁₉ ?

$$\begin{split} u_7 &= u_0 + 7 \times r = 5 + 7 \times \left(-\frac{1}{3} \right) = 5 - \frac{7}{3} = \frac{15}{3} - \frac{7}{3} = \frac{8}{3} \ ; \\ u_{19} &= u_0 + 19 \times r = 5 + 19 \times \left(-\frac{1}{3} \right) = 5 - \frac{19}{3} = \frac{15}{3} - \frac{19}{3} = -\frac{4}{3} \end{split}$$

Exercice 3:

La suite (u_n) est une suite arithmétique de raison r = -5. On donne $u_4 = 2$.

1) Calculer u_3 , u_5 , u_2 , u_1 , u_0 et u_9 .

$$u_4 = 2$$
; $u_3 = u_4 - r = 2 - (-5) = 7$; $u_5 = u_4 + r = 2 + (-5) = -3$; $u_2 = u_3 - r = 7 - (-5) = 12$
 $u_1 = u_2 - r = 12 - (-5) = 17$; $u_0 = u_1 - r = 17 - (-5) = 22$; $u_9 = u_4 + 5r = 2 + 5 \times (-5) = -23$

2) Exprimer u_{n+1} en fonction de u_n .

$$u_{n+1} = u_n + r = u_n - 5$$

3) Si on représentait la suite dans un repère, comment seraient les points ?

Les points de la représentation d'une suite arithmétique sont alignés.

Exercice 4:

On donne $u_n = 2n - 4$, pour tout n entier naturel.

1) Calculer les quatre premiers termes.

$$u_0 = 2 \times 0 - 4 = -4$$
; $u_1 = 2 \times 1 - 4 = -2$; $u_2 = 2 \times 2 - 4 = 0$; $u_3 = 2 \times 3 - 4 = 2$

2) Conjecturer la nature de la suite.

On passe d'un terme à l'autre en ajoutant 2 donc la suite (u_n) semble être arithmétique de raison r=2 et de premier terme $u_0=-4$.

3) Calculer u_{n+1} en fonction de n.

$$u_{n+1} = 2$$
 ($n + 1$) $-4 = 2n + 2 - 4 = 2n - 2$

4) Calculer $u_{n+1} - u_n$ et conclure.

$$u_{n+1} - u_n = 2n - 2 - (2n - 4) = 2n - 2 - 2n + 4 = 2$$

donc la suite (u_n) est arithmétique de raison r = 2 et de premier terme $u_0 = -4$.

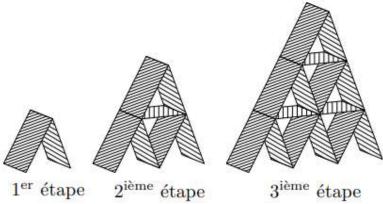
Exercice 5:

On donne les termes suivants : $-\frac{1}{2}$; $\frac{3}{14}$; $\frac{13}{14}$; $\frac{23}{14}$

1) Cette suite semble-elle arithmétique ? Justifier. Si oui, préciser la raison et le premier terme.

$$\frac{3}{14} - (-\frac{1}{2}) = \frac{5}{7}$$
; $\frac{13}{14} - \frac{3}{14} = \frac{5}{7}$; $\frac{23}{14} - \frac{13}{14} = \frac{5}{7}$

donc la suite (u_n) semble arithmétique de raison $r=\frac{5}{7}$ et de premier terme $u_0=-\frac{1}{2}$.


2) Calculer le cinquième et le huitième terme de cette suite.

le cinquième terme est
$$u_4$$
 . $u_3 = \frac{23}{14}$ donc $u_4 = u_3 + r = \frac{23}{14} + \frac{5}{7} = \frac{33}{14}$

le huitième terme est
$$u_7$$
 . $u_7 = u_0 + 7r = -\frac{1}{2} + 7 \times \frac{5}{7} = -\frac{1}{2} + 5 = \frac{9}{2}$

Exercice 6:

On considère la construction d'un château de cartes.

On appelle u_n le nombre de cartes nécessaires pour l'étape n. Ainsi $u_1 = 2$.

1) Donner la valeur de u₂ et u₃.

$$u_2 = 7$$
; $u_3 = 15$

2) Combien de cartes sont necessaires à l'étape 4 ? à l'étape 5 ?

$$u_4 = 26$$
; $u_5 = 40$

3) La suite (u_n) est-elle arithmétique ? Si oui, préciser sa raison et son premier terme.

$$7-2=5$$
; $15-7=8$ donc la suite n'est pas arithmétique.

En fait
$$u_{n+1} = u_n + (u_n - u_{n-1}) + 3 = 2u_n - u_{n-1} + 3$$
 avec $u_1 = 2$ et $u_2 = 7$.