Fiche d'exercices: Statistiques

Les élèves d'un lycée ont été interrogés sur le nombre de consoles de jeu qu'ils possèdent.

Nombre de consoles	0	1	2	3	4
Effectif	410	427	196	74	36

- a. Déterminer le nombre moyen de consoles possédées, ainsi que l'écart type de la série.
- **b.** Déterminer la proportion d'élèves dont le nombre de consoles possédées appartient à l'intervalle $[\bar{x} 2\sigma; \bar{x} + 2\sigma]$.
- Dans un centre d'appels, on a mesuré pendant une journée la durée de conversation avec chaque client.

Durée (en min)	1	3	5	7	9	11
Effectif	95	82	90	103	121	160

- Déterminer la durée moyenne d'un appel.
- b. Grâce à une meilleure gestion de la répartition entre les opérateurs, la durée de tous les appels diminue de 10 %.

Que vaut la nouvelle moyenne ?

Une professeure compte le nombre d'élèves qui ont réussi à résoudre un problème au bout d'une minute, puis elle compte toutes les 30 secondes les élèves ayant réussi depuis son dernier relevé.

Temps (en s)	60	90	120	150	180	210
Nombre d'élèves	15	29	30	23	12	11

- a. Combien d'élèves ont été interrogés ?
- b. Combien d'élèves ont mis moins de 2 minutes pour trouver la solution ?
- c. Quel est le temps médian de réponse ?

49 Afin de contrôler la fiabilité d'une balance, une entreprise réalise 40 mesures à l'aide d'étalons de masse 100 g.

99,1 - 100,2 - 99,4 - 100,3 - 101,0 - 100,2 - 99,6 - 100,0 - 100,7 - 100,3 - 99,4 - 100,2 - 100,2 - 100,1 - 99,2 - 99,5 - 100,3 - 100,2 - 99,7 - 99,5 - 99,9 - 100,3 - 100,4 - 100,3 - 99,0 - 99,7 - 100,4 - 100,9 - 100,6 - 99,8 - 100,1 - 99,6 - 100,0 - 99,8 - 99,4 - 100,3 - 100,1 - 99,4 - 99,3 - 99,0

La balance est déclarée fiable si :

- l'étendue est inférieure à 2,5 g et est inférieure au triple de l'écart interquartile;
- la masse médiane et la masse moyenne sont comprises dans l'intervalle [99,7; 100,3];
- au moins 90 % des masses sont comprises dans l'intervalle [99,2; 100,8].
- La balance contrôlée est-elle fiable ?

66 Communiquer Afin de tester la régularité d'une machine produisant des rondelles, un entrepreneur a fait mesurer le diamètre de 1 100 rondelles.

Diamètre (en mm)	19,7	19,75	19,8	19,8	85	19,	9	19,95	20
Effectif	13	28	35	49)	11	5	174	275
Diamètre (en mm)	20,05	20,1	20,	.15	20),2	2	20,25	20,3
Effectif	162	130	6	1	2	4		19	15

La machine est bien réglée si :

- le diamètre moyen \bar{x} et le diamètre médian diffèrent de moins de 0,1 mm ;
- · Q₃ Q₁ est inférieur ou égal à 0,15 mm ;
- au moins 95 % de la production a un diamètre appartenant à l'intervalle $[\bar{x} 2\sigma; \bar{x} + 2\sigma]$.
- La machine est-elle bien réglée ? Justifier.

Fiche d'exercices: Statistiques CORRECTION

Les élèves d'un lycée ont été interrogés sur le nombre de consoles de jeu qu'ils possèdent.

Nombre de consoles	0	1	2	3	4
Effectif	410	427	196	74	36

- a. Déterminer le nombre moyen de consoles possédées, ainsi que l'écart type de la série.
- **b.** Déterminer la proportion d'élèves dont le nombre de consoles possédées appartient à l'intervalle $[\bar{x} 2\sigma ; \bar{x} + 2\sigma]$.

a)
$$\overline{x} = \frac{0 \times 410 + 1 \times 427 + 2 \times 196 + 3 \times 74 + 4 \times 36}{410 + 427 + 196 + 74 + 36} \approx 1,037$$

 $\sigma \approx 1.035$

b) [
$$1,037 - 2 \times 1,035$$
 ; $1,037 + 2 \times 1,035$] = [$-1,033$; $3,107$]
 $410 + 427 + 196 + 74 = 1107$ élèves . $\frac{1107}{1143} \times 100 \approx 96,85$

Il a environ 97% des élèves qui ont un nombre de consoles compris entre 0 et 3,1.

Dans un centre d'appels, on a mesuré pendant une journée la durée de conversation avec chaque client.

Durée (en min)	1	3	5	7	9	11
Effectif	95	82	90	103	121	160

- a. Déterminer la durée moyenne d'un appel.
- b. Grâce à une meilleure gestion de la répartition entre les opérateurs, la durée de tous les appels diminue de 10 %.

Que vaut la nouvelle moyenne ?

a)
$$\frac{1 \times 95 + 3 \times 82 + \dots + 11 \times 160}{95 + 82 + \dots + 160} \approx 6,7$$

La durée moyenne d'un appel est de 6,7 minutes donc 6 minutes et 42 secondes.

b) Si la durée de tous les appels diminue de 10% la durée moyenne diminue de 10% .

$$6.7 \times (1 - \frac{10}{100}) = 6.7 \times 0.9 = 6.03$$

La nouvelle moyenne sera 6,03 minutes soit 6 minutes et 2 secondes.

26 Une professeure compte le nombre d'élèves qui ont réussi à résoudre un problème au bout d'une minute, puis elle compte toutes les 30 secondes les élèves ayant réussi depuis son dernier relevé.

Temps (en s)	60	90	120	150	180	210
Nombre d'élèves	15	29	30	23	12	11

- a. Combien d'élèves ont été interrogés ?
- b. Combien d'élèves ont mis moins de 2 minutes pour trouver la solution ?
- c. Quel est le temps médian de réponse ?
- a) 15 + 29 + 30 + 23 + 12 + 11 = 120 La professeure a interrogé 120 élèves.
- b) 2 min = 120 s donc on a 15 + 29 = 44 élèves qui ont mis moins de 2 minutes pour trouver la solution.

c)
$$\frac{60 \times 15 + 90 \times 29 + \dots + 210 \times 11}{120} = 125,25$$

Le temps moyen pour une réponse est 125,25 secondes.

49 Afin de contrôler la fiabilité d'une balance, une entreprise réalise 40 mesures à l'aide d'étalons de masse 100 g.

La balance est déclarée fiable si :

- l'étendue est inférieure à 2,5 g et est inférieure au triple de l'écart interquartile;
- la masse médiane et la masse moyenne sont comprises dans l'intervalle [99,7; 100,3];
- au moins 90 % des masses sont comprises dans l'intervalle [99,2; 100,8].
- La balance contrôlée est-elle fiable ?

L'étendue est : max - min = 101 - 99 = 2On a 40 valeurs.

 $\frac{40}{4}$ = 10 donc Q₁ est la 10è valeur donc Q₁ = 99,5

 $\frac{40}{4} \times 3 = 30 \text{ donc } Q_3 \text{ est la 30è valeur donc } Q_3 = 100,3$

 $Q_3 - Q_1 = 100,3 - 99,5 = 0,8$; $3 \times 0,8 = 2,4$.

Donc l'étendue est inférieure à 2,5g et au triple de l'écart interquartile.

L'effectif total est 40; il est pair donc la médiane est la moyenne entre la 20è et la 21è valeur donc

$$m_e = \frac{100 + 100,1}{2} = 100,05.$$

$$\overline{x} = \frac{99,1 + 100,2 + \dots + 99}{40} \approx 99,935$$

La médiane et la moyenne sont bien dans l'intervalle [99,7 ; 100,3].

Dans [99,2 ; 100,8] on a 35 valeurs. $\frac{35}{40} \times 100 = 87,5$

On a donc 87,5% des valeurs dans l'intervalle [99,2 ; 100,8]. La balance n'est donc pas fiable.

66 Communiquer Afin de tester la régularité d'une machine produisant des rondelles, un entrepreneur a fait mesurer le diamètre de 1 100 rondelles.

Diamètre (en mm)	19,7	19,75	19,8	19,8	85	19,	9	19,95	20
Effectif	13	28	35	49	9	115	5	174	275
Diamètre (en mm)	20,05	20,1	20,	15	20),2	2	0,25	20,3
Effectif	162	130	6	1	2	4		19	15

La machine est bien réglée si :

- le diamètre moyen \bar{x} et le diamètre médian diffèrent de moins de 0,1 mm ;
- Q₃ Q₁ est inférieur ou égal à 0,15 mm ;
- au moins 95 % de la production a un diamètre appartenant à l'intervalle $[\bar{x} 2\sigma; \bar{x} + 2\sigma]$.
- La machine est-elle bien réglée ? Justifier.

$$\overline{x} = \frac{19,7 \times 13 + 19,75 \times 28 + \dots + 20,3 \times 15}{1100} \approx 19,99896$$

L'effectif est 1100 ; il est pair donc la médiane est la moyenne entre la 550è et la 551è valeur qui valent toutes deux 20 donc $m_e = 20$. L'écart entre la moyenne et la médiane est 20 - 19,99896 = 0,00104 C'est donc moins d'un millimètre.

$$\frac{1100}{4} = 275 \ donc \ Q_1 \ est \ la \ 275\grave{e} \ valeur \ donc \ Q_1 = 19,95.$$

$$\frac{1100}{4} \times 3 = 825 \ donc \ Q_3 \ est \ la \ 825 \`e \ valeur \ donc \ Q_3 = 20,05$$

$$Q_3 - Q_1 = 20,05 - 19,95 = 0,1$$
. Il est bien inférieur à 0,15mm.

$$\sigma \approx 0.11 \text{ donc } [\overline{x} - 2 \sigma; \overline{x} + 2 \sigma] = [19.78; 20.22]$$

On a 1100 - (13 + 28 + 19 + 15) = 1025 valeurs dans cet intervalle.

$$\frac{1025}{1100}\times 100$$
 = 93,2 donc 93,2% des valeurs sont dans cet intervalle .

La machine n'est donc pas bien réglée.