

Le soin et la rédaction seront pris en compte dans la notation. Faites des phrases claires et précises. Le barème est approximatif. La calculatrice en mode examen est autorisée.

Attention! Le sujet est recto-verso.

5 points

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions, quatre réponses sont proposées, dont une seule est exacte. Le candidat complètera le tableau de la page 3 qui sera ramassé 20 minutes apès le début de l'épreuve. On ne demande pas de justification. Il est attribué 1 point si la réponse est exacte. Aucun point n'est enlevé en l'absence de réponse ou en cas de réponse fausse.

- 1 La quantité $\frac{(e^{2x})^2}{e^{3x+1} \times e^{-x-1}}$ peut se simplifier en :

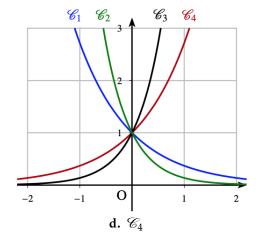
c. 1

d. 0

- 2 On peut remplacer $2 + \frac{3e^{-x} 5}{e^{-x} + 1}$ par : **a.** $\frac{5 3e^x}{1 e^x}$ **b.** $\frac{5 + 3e^x}{1 e^x}$

- **d.** $\frac{5-3e^x}{1+e^x}$

- 3 On peut écrire $(3x-1)e^x < 0 \iff 3x-1 < 0$ car : 1 pt
 - a. La fonction exp est monotone


- **b.** La fonction exp est strictement croissante sur \mathbb{R}
- **c.** La fonction exp est strictement positive sur \mathbb{R}
- **d.** La fonction exp est non nulle sur \mathbb{R}

1 pt

On a représenté quatre fonctions f, g, h et k définies sur \mathbb{R} par :

$$f(x) = e^x$$
, $g(x) = e^{-x}$, $h(x) = e^{2x}$, $k(x) = e^{-2x}$

Laquelle de ces courbes représente la fonction k?

a. \mathscr{C}_1

b. %

c. C₃

- 1 pt
- Soit f la fonction de courbe \mathcal{C}_f définie sur \mathbb{R} par $f(x) = xe^x$.

La tangente à la courbe représentative \mathcal{C}_f de la fonction f en x=1 a pour équation :

- **a.** y = ex + e
- **b.** y = 2ex e
- **c.** y = 2ex + e
- **d.** y = ex

5 pts

1 Écrire plus simplement les expressions suivantes en utilisant les propriétés algébriques de l'exponentielle :

$$A = \frac{e^6 \times e^{-4}}{e^{-3}}$$
 $B = \frac{e^{1+x}}{e^{x+2}}$ $C = \frac{\left(e^{-2x}\right)^3 \times e^{4x}}{e^{-2x}}$

- 2 Montrer les égalités suivantes, pour tout $x \in \mathbb{R}$:
 - **a.** $2e^{2x} + 6e^x 8 = 2(e^x 1)(e^x + 4)$
 - **b.** $\frac{(e^x-1)(e^x+1)}{e^{2x}}=1-e^{-2x}$

Exercice 3 : Equations et Inéquations

5 points

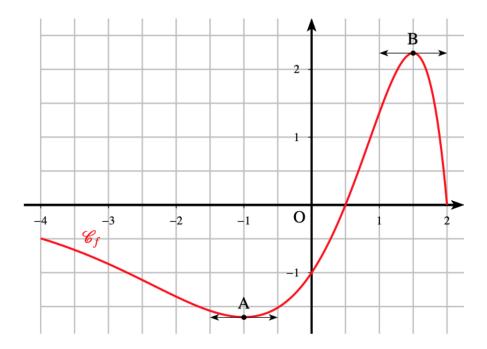
- 5 pts Résoudre dans $\mathbb R$ les équations ou inéquations suivantes :
 - 1 $e^{2x-3} = e^2$
 - $2 (5x-7)e^{3x-1} = 0$
 - 3 $e^{-x} 1 \le 0$.
 - 4 $(6-5x)e^x > 0$.

Exercice 4

5 points

- 5 pts Calculer la dérivée de chacune des fonctions définies et dérivables sur $\mathbb R$:
 - $f(x) = 7x^2 + 5x + 1 3e^x$
 - $2 g(x) = (3x+5)e^x$
 - 3 $h(x) = \frac{e^x + 1}{3e^x + 2}$

Exercice 5: Variations


6 points

- 6 pts Soit la fonction f définie sur [0;5] par : $f(x) = (4x-1)e^{-x}$
 - 1 Déterminer et factoriser f'(x) où f' est la fonction dérivée de f.
 - Résoudre f'(x) = 0 puis dresser le tableau de variations de f sur [0;5] en précisant les valeurs exactes des bornes et du maximum de f.

Exercice 6 Représentation graphique et fonction

5 points

5 pts On considère une fonction f définie et dérivable sur l'intervalle [-4;2] dont on donne la courbe C_f ci-dessous.

- 1 Résoudre graphiquement f'(x) = 0 et $f'(x) \le 0$. Justifier.
- On admet que la fonction f est définie par : $f(x) = (-x^2 + 2, 5x 1)e^x$.
 - **a.** Déterminer la fonction dérivée f'.
 - **b.** Étudier le signe de la fonction f' sur [-4; 2] puis dresser le tableau de variation de la fonction f sur [-4; 2].
 - c. Déterminer l'équation de la tangente à C_f en $\frac{1}{2}$.

Exercice 7

3 points

- 3 pts On appelle cosinus hyperbolique la fonction définie sur \mathbb{R} par ch : $x \mapsto \operatorname{ch}(x) = \frac{e^x + e^{-x}}{2}$ et sinus hyperbolique la fonction définie sur \mathbb{R} par sh : $x \mapsto \operatorname{sh}(x) = \frac{e^x e^{-x}}{2}$
 - 1 Montrez que $ch(x) + sh(x) = e^x$ puis que $ch(x) sh(x) = e^{-x}$.
 - Montrez que $ch^2(x) sh^2(x) = 1$

Exercice 8 Bonus

4,75 points

- 4.75 pts On considère la fonction f définie sur \mathbb{R} par $f(x)=(ax+b)e^{-3x}$ avec a et b deux réels.
 - 1 Calculer f'(x).
 - Trouver a et b sachant que f(0) = 1 et f'(0) = 0.
 - 3 Etudier les variations de f.
 - 4 Déterminer l'équation de la tangente à \mathscr{C}_f , la courbe représentative de f, au point d'abscisse 0.

4 points

4 pts Soit Γ la courbe de la fonction exponentielle.A et B deux points distincts de Γ. Démontrer que les segment [AB] se situe toujours au dessus de Γ.

Nom:	. GM	TMATHS OISCICT	Sept. 2023
Prénom :	DS 01 & CASE DES MATHS	Devoir nº 02	/

Feuille de réponses de l'exercice 1 :

A rendre au bout de 20 minutes.

Nom , prénom : Groupe :

	Question 1	Question 2	Question 3	Question 4	Question 5
Réponse					