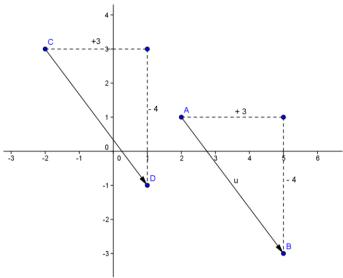
VECTEURS ET TRANSLATIONS

I. Introduction: la translation:



A(2;1); B(5;-3); C(-2;3).

Conséquence:

On dit que les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont

On dit aussi qu'ils sont les **représentants** d'un même vecteur que l'on pourra noter \overrightarrow{u} .

II. Les vecteurs : quelques définitions et propriétés :

1) Vecteurs égaux et parallélogramme :

Sur l'exemple précédent on a $\overrightarrow{AB} = \overrightarrow{CD}$.

On remarque également que le quadrilatère ABDC a deux côtés parallèles et de même longueur (car on a effectué le même déplacement de A vers B que de C vers D) donc on peut affirmer que le quadrilatère ABDC est un parallélogramme.

.....

2) Vecteurs particuliers:

a) Le vecteur nul :

Le vecteur \overrightarrow{AA} correspond à un déplacement de A vers A donc un déplacement nul. On dira que le vecteur \overrightarrow{AA} est un vecteur nul et on notera $\overrightarrow{AA} = \overrightarrow{O}$

b) Vecteurs opposés:

Le vecteur \overrightarrow{AB} correspond à un déplacement de A vers B.

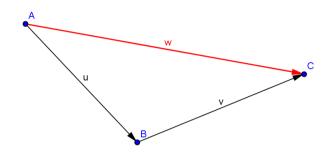
Le vecteur \overrightarrow{BA} correspond à un déplacement de B vers A donc un déplacement opposé au précédent.

Les vecteurs \overrightarrow{AB} et \overrightarrow{BA} sont dits et on notera et on notera

III. Addition de deux vecteurs :

1) Définition :

Soit \overrightarrow{u} le vecteur qui va de A vers B. $\overrightarrow{u} = \overrightarrow{AB}$ Soit \overrightarrow{v} le vecteur qui va de B vers C. $\overrightarrow{v} = \overrightarrow{BC}$. On appelle \overrightarrow{w} le vecteur qui va de A vers C.



Ce vecteur \overrightarrow{w} résulte de l'enchainement de deux déplacements, de deux translations, l'une de vecteur \overrightarrow{u} et l'autre de vecteur \overrightarrow{v} .

On dira alors que \overrightarrow{w} est la somme des deux vecteurs \overrightarrow{u} et \overrightarrow{v} . On notera $\overrightarrow{w} = \overrightarrow{u} + \overrightarrow{v}$.

2) Construction géométrique de la somme de deux vecteurs :

Deux techniques différentes mais équivalentes sont possibles :

La technique du " bout à bout "

La technique du parallélogramme

On colle le vecteur \overrightarrow{v} au bout du vecteur \overrightarrow{u} .

On a alors $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$ Cette relation est connue sous le nom de **Relation de Chasles**

(Michel Chasles est un mathématicien français né en 1793 et mort en 1880)

On représente \overrightarrow{u} et \overrightarrow{v} avec la même origine O, puis on termine le parallélogramme

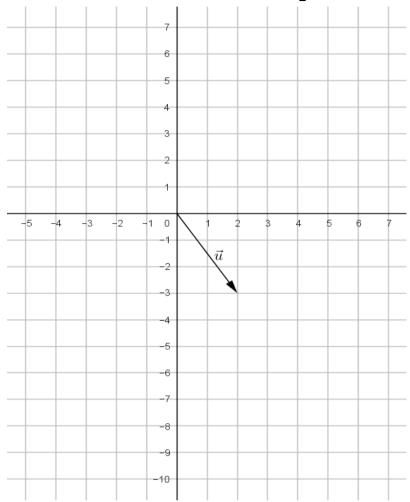
La diagonale de ce parallélogramme commençant par O sera le vecteur $\overrightarrow{u} + \overrightarrow{v}$.

IV. Multiplication d'un vecteur par un réel :

1) Exemple:

Soit u le vecteur dessiné ci-dessous.

Représenter
$$\overrightarrow{u}$$
, 3 \overrightarrow{u} , -2 \overrightarrow{u} et $\frac{1}{2}$ \overrightarrow{u} .



On constate que \overrightarrow{u} , 3 \overrightarrow{u} et $\frac{1}{2}$ \overrightarrow{u}

et que u et – 2 u

.....

2) Définitions :

Soit α un nombre réel quelconque.

Si
$$\alpha = 0$$
 alors $0 \times \overrightarrow{u} = \overrightarrow{0}$

Si
$$\alpha = 1$$
 alors $1 \times \overrightarrow{u} = \overrightarrow{u}$

Si
$$\alpha = -1$$
 alors $-1 \times \overrightarrow{u} = -\overrightarrow{u}$

Si $\alpha > 0$: $\alpha \overrightarrow{u}$ et \overrightarrow{u} auront le même sens et la longueur de $\alpha \overrightarrow{u}$ sera celle de \overrightarrow{u} multipliée par α

Si α < 0: $\alpha \overrightarrow{u}$ et \overrightarrow{u} seront de sens contraire et la longueur de $\alpha \overrightarrow{u}$ sera celle de \overrightarrow{u} multipliée par $-\alpha$

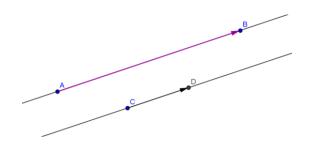
3) Vecteurs colinéaires :

a) Définition :

On dira que \overrightarrow{u} et \overrightarrow{v} sont s'il existe un réel k tel que

b) Vecteurs colinéaires et parallélisme :

 $\overrightarrow{\mathsf{AB}}$ et $\overrightarrow{\mathsf{CD}}$ sont \Leftrightarrow les droites



c) Vecteurs colinéaires et alignement :

Si $\overrightarrow{\mathsf{AB}}$ et $\overrightarrow{\mathsf{AC}}$ sont ⇔ les points

